If the center is (-1,1), the the circle looks like
(x - -1)^2 + (y-1)^2 = r^2 or
(x + 1)^2 + (y-1)^2 = r^2.
4x^2 + 4y^2 + 8x - 92 = 8y, divide everything by 4
x^2 + y^2 + 2x - 23 = 2y, rearrange as
x^2 + 2x + y^2 -2y = 23, note sign changes, complete the square
(x^2 + 2x + 1) + (y^2 -2y +1) = 23 + 1 + 1, note, we just added 2 to both sides, so did not change anything
(x+1)^2 + (y-1)^2 = 5^2, radius is 5.
2007-10-04 19:01:01
·
answer #1
·
answered by Anonymous
·
0⤊
1⤋
4x² + 4y² + 8x - 92 = 8y
=> x² + y² + 2x - 23 = 2y
=> x² +2x + y² -2y - 23 = 0
=> x² +2x + 1 + y² -2y + 1 - 23 - 2 = 0
=> (x + 1)² + (y - 1)² = 25
Since equation of circle is of form (x - a)² + (y - b)² = r²
Radius = â(25)
= 5
2007-10-05 02:02:24
·
answer #2
·
answered by tancy2411 4
·
0⤊
0⤋
4x^2 + 4y^2 + 8x - 92 = 8y
4x^2 + 4y^2 + 8x - 8y = 92
4x^2 + 8x + 4y^2 - 8y = 92
x^2 + 2x + y^2 - 2y = 23
(x^2 + 2x) + (y^2 - 2y) = 23
(x^2 + 2x + 1 - 1) + (y^2 - 2y + 1 - 1) = 23
((x + 1)^2 - 1) + ((y - 1)^2 - 1) = 23
(x + 1)^2 - 1 + (y - 1)^2 - 1 = 23
(x + 1)^2 + (y - 1)^2 - 2 = 23
(x + 1)^2 + (y - 1)^2 = 25
now using
(x - h)^2 + (y - k)^2 = r^2
ANS : radius is 5
2007-10-05 02:27:13
·
answer #3
·
answered by Sherman81 6
·
0⤊
2⤋
x² + y² + 2x - 2y - 23 = 0
x² + y² + 2gx + 2fy + c = 0
Centre(- g ,- f)
c = - 23
r ² = g ² + f ² - c
2 g = 2
g = 1
2 f = - 2
f = - 1
Centre(-1 , 1)
r ² = 1 + 1 + 23
r ² = 25
r = 5
2007-10-05 04:57:33
·
answer #4
·
answered by Como 7
·
4⤊
2⤋