English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

I'd like to see work to get me through this problem, if possible, the actual steps of proving it. Any help welcome, thanks!

2007-10-03 15:42:05 · 5 answers · asked by ash 2 in Science & Mathematics Mathematics

5 answers

Generally, it's traditional to derive the derivative of sine first, and then to use the chain rule and the identities sin x = cos (π/2 -x) and cos x = sin (π/2 - x) to show that d/dx (cos x) = d/dx (sin (π/2 - x)) = cos (π/2 - x) * (-1) = -sin x. But if you want to go through the definition a second time:

d/dx (cos x)
[h→0]lim (cos (x+h) - cos x)/h
[h→0]lim (cos x cos h - sin x sin h - cos x)/h
[h→0]lim (cos x cos h - cos x)/h - [h→0]lim (sin x sin h)/h
cos x [h→0]lim (cos h - 1)/h - sin x [h→0]lim sin h/h
cos x [h→0]lim (cos h - 1)/h - sin x
cos x [h→0]lim (cos² h - 1)/(h(cos h + 1)) - sin x
cos x [h→0]lim -sin² h/(h(cos h + 1)) - sin x
cos x [h→0]lim -sin h/h * [h→0]lim sin h/(cos h + 1) - sin x
cos x * (-1) * 0 - sin x
-sin x

Note that this presumes you know [h→0]lim sin h/h = 1, which can be proved by using geometric arguments to establish the inequality cos h < sin h/h < 1 on the interval [-π/2, π/2]\{0}, and then invoking the squeeze theorem.

2007-10-03 15:55:48 · answer #1 · answered by Pascal 7 · 0 0

you can prove it using the definition of the derivative + the limits limx->0 sinx/x = 1 and limx->0 cosx-1/x =0 these are found in your text book assume f(x) = cosx then f '(x)= limh->0 cos(x+h) - cos(x) / h using trigonometric identities you substitute since cos (x+h) = cosxcosh-sinxsinh limh->0 cosxcosh-sinxsinh -cosx /h then you factor cosx out to get = limh->0 cosx(cosh-1) -sinxsinh /h = limh->0 cosx(cosh-1)/h - sinxsinh/h then you use the limits limx->0 sinx/x = 1 and limx->0 cosx-1/x =0 you will end up with limh->0 cosx(0) - sinx(1) = -sinx hope this helps good luck

2016-05-20 05:12:14 · answer #2 · answered by phoebe 3 · 0 0

lim...... (cos(x+h) - cos(x)) /h
h->0

expand the cosine

lim h->0 (cos(x)cos(h)-sin(x)sin(h) - cos(x)) / h

rearange:

lim h->0 (cos(x) (cos(h) -1) - sin(x)sin(h))/h

split it up:

lim h->0 cos(x) (cos(h)-1)/h - sin(x) sin(h)/h

Now you should see two special limits:
lim h->0 (cos(h)-1)/h = 0
and
lim h->0 sin(h)/h = 1

so you are left with -sin(x)

2007-10-03 15:53:47 · answer #3 · answered by Mαtt 6 · 0 0

f(x) = cos x

f(x+h) = cos(x+h)

= cosx cosh - sinx sinh

f(x+h) - f(x) = cosx cosh - sin x sin h - cosx

= cosx(cos h - 1) - sin x sin h

f(x+h)-f(x)/h = cosx[(cosh-1/h)] - sinx (sinh/h)

when h ->0 (cosh - 1)h = 0 and

sinh/h = 1

f'(x) = 0 - sinx

= -sin x

2007-10-03 16:04:57 · answer #4 · answered by mohanrao d 7 · 0 0

[cos(x+h) - cos(x)] / h

= [cos(x) cos(h) - sin(x) sin(h) - cos(x)] / h

= [cos(x) (cos(h) - 1)] / h - [sin(x) sin(h)] / h

Take limit as x -> 0

= cos(x) * 0 - sin(x) * 1

= -sin(x)

2007-10-03 15:57:47 · answer #5 · answered by z_o_r_r_o 6 · 0 0

fedest.com, questions and answers