One possible method of deriving the formula is to compute the sum of (k+1)³ (sic) in two different ways:
[k=1, n]∑(k+1)³
= [k=2, n+1]∑k³
= (n+1)³ - 1 + [k=1, n]∑k³
And:
[k=1, n]∑(k+1)³
= [k=1, n]∑(k³ + 3k² + 3k + 1)
= [k=1, n]∑k³ + 3[k=1, n]∑k² + 3[k=1, n]∑k + [k=1, n]∑1
So we have that:
(n+1)³ - 1 + [k=1, n]∑k³ = [k=1, n]∑k³ + 3[k=1, n]∑k² + 3[k=1, n]∑k + [k=1, n]∑1
And subtracting [k=1, n]∑k³ from both sides yields:
(n+1)³ - 1 = 3[k=1, n]∑k² + 3[k=1, n]∑k + [k=1, n]∑1
And since the formulae for [k=1, n]∑1 and [k=1, n]∑k are easy to deduce, we may substitute them to find:
(n+1)³ - 1 = 3[k=1, n]∑k² + 3n(n+1)/2 + n
If we denote [k=1, n]∑k² by S, we now have an equation that we can solve for S:
(n+1)³ - 1 = 3S + 3n(n+1)/2 + n
n³ + 3n² + 3n + 1 - 1 = 3S + 3n(n+1)/2 + n
2n³ + 6n² + 6n = 6S + 3n(n+1) + 2n
2n³ + 6n² + 6n = 6S + 3n² + 3n + 2n
2n³ + 3n² + n = 6S
n(n+1)(2n+1) = 6S
S = n(n+1)(2n+1)/6
[k=1, n]∑k² = n(n+1)(2n+1)/6
And we are done. Easier than falling off a logarithm.
2007-10-02 13:29:31
·
answer #1
·
answered by Pascal 7
·
1⤊
0⤋