Always draw a free-body diagram.
Carefully label ALL the forces acting on all the objects in the diagram.
When you have an object moving from once place to another, draw it in the initial position, and also draw it in the final position. Seperately label the initial and final positions, velocities, accelerations, etc.
Notice all the external forces that act on any of the objects (ex. friction, air resistance).
Don't ever try to just memorize formulas, because that will make you worse at physics.
Do all the problems in the chapter, and look up the answers. Most books have only the odd ones, so ask your teacher for the even ones. My teacher would assign the homework problems in the last 15 minutes of class. In the last 2 minutes, she would write ALL the answers on the board. NOT the work too, but just the answers. This was so we could know if we got the answers right or wrong.
Pay careful attention to units. My AP Physics teacher always used to say "units are your friends."
* Try to answer some physics problems here on Yahoo! Answers. Start with the easy ones.
2007-10-02 06:44:08
·
answer #1
·
answered by عبد الله (ドラゴン) 5
·
0⤊
0⤋
Hmmm... on the level of high school physics the main thing you can do is to discuss what you don't understand with people in your class until all of you get a better feeling for it. That's what real physicists do, too: they talk to each other all day long! And then, of course, you can try to solve as many problems as you can. This will not only help you to understand better but you will also train your math skills and you will feel more confident in tests.
You see... much of what they call physics in school is really all about solving numerical and word problems. But it lacks a lot of the conceptual simplicity you would get to see if you were to take a university class or two where REAL physics gets to be taught.
Much of that problem has to do with the lack of time in the classroom and the shallow depth of the material that can be presented to students. After all, you also have to learn a dozen other topics at the same time! It is not your fault that the material looks inconsistent and sketchy. Even a great science teacher can only do so much for you to make that better and the good teachers know that and try.
So... if you go back to your books and imagine that all of this does make sense, once it's "done right", you might get some motivation to keep working at it. Or so I would hope.
Good luck and don't despair! You can do it! Just keep at it.
2007-10-02 06:53:24
·
answer #2
·
answered by Anonymous
·
0⤊
0⤋
Everybody has a different "learning style," but I'll tell you what always helped me:
* Don't try to memorize a lot of formulas. Instead, try to get an intuitive "grasp" of what some of the _simple_ formulas are saying (like F=ma). If you "get" the simple formulas, then you can often "derive" the more complex ones on demand, by just applying some algebra.
* When you're solving a problem, make a variable for each quantity you know, and each quantity you don't know but need to find out. Write down a simple equation for each quantity you know, and an equation with a question mark for each quantity you don't know.
* Draw diagrams! And bigger diagrams are usually easier to work with than smaller ones.
* Break problems down to their basics. For example, if somebody gives you a problem involving two weights, a rope, a pulley and and inclined plane, take a look at just one piece at a time. Look at just one of the weights (ignoring everything else temporarily) and write down a list of all the forces acting on JUST that weight. Write equations for the forces if you can. Don't worry if some of the equations have variables in them that you don't yet know the values of--the equations will still be useful in the end.
* When you think you've got a solution for a problem, do a "sanity check" to make sure it makes sense. Look at your final equation and think about how it would change if you altered some of the numbers in the formula. For example, suppose you came up with a formula for "energy" that looked like: (x+y)/v, where "v" is some object's velocity. Ask yourself, "what happens to the energy if "v" gets very large or very small, or is zero? Does the equation still make sense?
2007-10-02 07:00:50
·
answer #3
·
answered by RickB 7
·
2⤊
0⤋
V=(GM/r^)^.5 G is newtons consistent, 6.673 x 10^-11 M is mass of significant physique (earth) R is the area of moon from center to center 6.08 x 10^8+6,378,a hundred+a million,737,4 hundred= 616,one hundred fifteen,500 meters<--------- distance of moon from center of Earth 6.673 x 10^-11 x 5.9742 x 10^24/614,one hundred fifteen,500)^.5 = 805.398 m/s
2016-10-05 23:32:45
·
answer #4
·
answered by richberg 4
·
0⤊
0⤋
i live in iran
and i have found physics hard
but dont worry what you need to do is to solve more physic problems and alway know where the problem is from.
iam getting better in physics
i hope you can too
2007-10-02 06:45:44
·
answer #5
·
answered by Mehran.S 4
·
0⤊
0⤋