Algebra is a branch of mathematics concerning the study of structure, relation and quantity. The name is derived from the treatise written by the Persian[1] mathematician, astronomer, astrologer and geographer, Muhammad bin MÅ«sÄ al-KhwÄrizmÄ« titled (in Arabic اÙÙتاب اÙجبر ÙاÙÙ
ÙابÙØ© ) Al-Kitab al-Jabr wa-l-Muqabala (meaning "The Compendious Book on Calculation by Completion and Balancing"), which provided symbolic operations for the systematic solution of linear and quadratic equations.
Together with geometry, analysis, combinatorics, and number theory, algebra is one of the main branches of mathematics. Elementary algebra is often part of the curriculum in secondary education and provides an introduction to the basic ideas of algebra, including effects of adding and multiplying numbers, the concept of variables, definition of polynomials, along with factorization and determining their roots.
Algebra is much broader than elementary algebra and can be generalized. In addition to working directly with numbers, algebra covers working with symbols, variables, and set elements. Addition and multiplication are viewed as general operations, and their precise definitions lead to structures such as groups, rings and fields.
Contents [hide]
1 Classification
2 Elementary algebra
3 Abstract algebra
3.1 Groups—structures of a set with a single binary operation
3.2 Rings and fields—structures of a set with two particular binary operations, (+) and (Ã)
4 Objects called algebras
5 History
6 References
7 See also
8 References
9 External links
[edit] Classification
Linear algebra lecture about determinants and inverse matrices.Algebra may be divided roughly into the following categories:
Elementary algebra, in which the properties of operations on the real number system are recorded using symbols as "place holders" to denote constants and variables, and the rules governing mathematical expressions and equations involving these symbols are studied (note that this usually includes the subject matter of courses called intermediate algebra and college algebra), also called first year and second year algebra;
Abstract algebra, sometimes also called modern algebra, in which algebraic structures such as groups, rings and fields are axiomatically defined and investigated; this includes, among other fields,
Linear algebra, in which the specific properties of vector spaces are studied (including matrices);
Universal algebra, in which properties common to all algebraic structures are studied.
Algebraic number theory, in which the properties of numbers are studied through algebraic systems. Number theory inspired much of the original abstraction in algebra.
Algebraic geometry in its algebraic aspect.
Algebraic combinatorics, in which abstract algebraic methods are used to study combinatorial questions.
In some directions of advanced study, axiomatic algebraic systems such as groups, rings, fields, and algebras over a field are investigated in the presence of a geometric structure (a metric or a topology) which is compatible with the algebraic structure. The list includes a number of areas of functional analysis:
Normed linear spaces
Banach spaces
Hilbert spaces
Banach algebras
Normed algebras
Topological algebras
Topological groups
[edit] Elementary algebra
Main article: Elementary algebra
Elementary algebra is the most basic form of algebra. It is taught to students who are presumed to have no knowledge of mathematics beyond the basic principles of arithmetic. In arithmetic, only numbers and their arithmetical operations (such as +, â, Ã, ÷) occur. In algebra, numbers are often denoted by symbols (such as a, x, y). This is useful because:
It allows the general formulation of arithmetical laws (such as a + b = b + a for all a and b), and thus is the first step to a systematic exploration of the properties of the real number system.
It allows the reference to "unknown" numbers, the formulation of equations and the study of how to solve these (for instance, "Find a number x such that 3x + 1 = 10").
It allows the formulation of functional relationships (such as "If you sell x tickets, then your profit will be 3x - 10 dollars, or f(x) = 3x - 10, where f is the function, and x is the number the function is performed on.").
[edit] Abstract algebra
Main article: Abstract algebra
See also: Algebraic structure
Abstract algebra extends the familiar concepts found in elementary algebra and arithmetic of numbers to more general concepts.
Sets: Rather than just considering the different types of numbers, abstract algebra deals with the more general concept of sets: a collection of all objects (called elements) selected by property, specific for the set. All collections of the familiar types of numbers are sets. Other examples of sets include the set of all two-by-two matrices, the set of all second-degree polynomials (ax² + bx + c), the set of all two dimensional vectors in the plane, and the various finite groups such as the cyclic groups which are the group of integers modulo n. Set theory is a branch of logic and not technically a branch of algebra.
Binary operations: The notion of addition (+) is abstracted to give a binary operation, * say. The notion of binary operation is meaningless without the set on which the operation is defined. For two elements a and b in a set S a*b gives another element in the set; this condition is called closure). Addition (+), subtraction (-), multiplication (Ã), and division (÷) can be binary operations when defined on different sets, as is addition and multiplication of matrices, vectors, and polynomials.
Identity elements: The numbers zero and one are abstracted to give the notion of an identity element for an operation. Zero is the identity element for addition and one is the identity element for multiplication. For a general binary operator * the identity element e must satisfy a * e = a and e * a = a. This holds for addition as a + 0 = a and 0 + a = a and multiplication a à 1 = a and 1 à a = a. However, if we take the positive natural numbers and addition, there is no identity element.
Inverse elements: The negative numbers give rise to the concept of inverse elements. For addition, the inverse of a is -a, and for multiplication the inverse is 1/a. A general inverse element a-1 must satisfy the property that a * a-1 = e and a-1 * a = e.
Associativity: Addition of integers has a property called associativity. That is, the grouping of the numbers to be added does not affect the sum. For example: (2+3)+4=2+(3+4). In general, this becomes (a * b) * c = a * (b * c). This property is shared by most binary operations, but not subtraction or division or octonion multiplication .
Commutativity: Addition of integers also has a property called commutativity. That is, the order of the numbers to be added does not affect the sum. For example: 2+3=3+2. In general, this becomes a * b = b * a. Only some binary operations have this property. It holds for the integers with addition and multiplication, but it does not hold for matrix multiplication or quaternion multiplication .
[edit] Groups—structures of a set with a single binary operation
Main article: Group (mathematics)
See also: Group theory and Examples of groups
Combining the above concepts gives one of the most important structures in mathematics: a group. A group is a combination of a set S and a single binary operation '*', defined in any way you choose, but with the following properties:
An identity element e exists, such that for every member a of S, e * a and a * e are both identical to a.
Every element has an inverse: for every member a of S, there exists a member a-1 such that a * a-1 and a-1 * a are both identical to the identity element.
The operation is associative: if a, b and c are members of S, then (a * b) * c is identical to a * (b * c).
If a group is also commutative - that is, for any two members a and b of S, a * b is identical to b * a – then the group is said to be Abelian.
For example, the set of integers under the operation of addition is a group. In this group, the identity element is 0 and the inverse of any element a is its negation, -a. The associativity requirement is met, because for any integers a, b and c, (a + b) + c = a + (b + c).
The nonzero rational numbers form a group under multiplication. Here, the identity element is 1, since 1 à a = a à 1 = a for any rational number a. The inverse of a is 1/a, since a à 1/a = 1.
The integers under the multiplication operation, however, do not form a group. This is because, in general, the multiplicative inverse of an integer is not an integer. For example, 4 is an integer, but its multiplicative inverse is 1/4, which is not an integer.
The theory of groups is studied in group theory. A major result in this theory is the classification of finite simple groups, mostly published between about 1955 and 1983, which is thought to classify all of the finite simple groups into roughly 30 basic types.
Examples
Set: Natural numbers Integers Rational numbers (also real and complex numbers) Integers mod 3: {0,1,2}
Operation + à (w/o zero) + à (w/o zero) + â à (w/o zero) ÷ (w/o zero) + à (w/o zero)
Closed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Identity 0 1 0 1 0 NA 1 NA 0 1
Inverse NA NA -a NA -a a a 0,2,1, respectively NA, 1, 2, respectively
Associative Yes Yes Yes Yes Yes No Yes No Yes Yes
Commutative Yes Yes Yes Yes Yes No Yes No Yes Yes
Structure monoid monoid Abelian group monoid Abelian group quasigroup Abelian group quasigroup Abelian group Abelian group ()
2007-10-01 21:21:46
·
answer #2
·
answered by M 1 A . 5
·
0⤊
0⤋