English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Determine y' when
y= x ^ (1/x)
y' = (y/ x^2) (lnx-1)
???
plz show me how

2007-09-27 13:47:55 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

y= x ^ (1/x)
lny = (1/x)ln(x)
y'(1/y) = [(1/x)(1/x) -ln(x)/x^2]
y' = [(1/x)(1/x) -ln(x)/x^2]/x^(1/x)
y' = [1/x^2 - ln(x)/x^2]/x^(1/x)
y' = [(1-ln(x))/x^2]/x^(1/x)

2007-09-27 14:05:40 · answer #1 · answered by ironduke8159 7 · 0 0

y = x^(1/x)

taking logs

ln y = (1/x) (ln x) = lnx/x

differentiating

(1/y) y' = x(1/x) -lnx (1)/x^2

= (1 - lnx)/x^2

y' = (y/x^2)(1 - ln x)

2007-09-27 14:00:57 · answer #2 · answered by mohanrao d 7 · 0 0

fedest.com, questions and answers