14 n - 14 = 3 n + 5
11 n = 19
n = 19 / 11
2007-09-29 03:13:36
·
answer #1
·
answered by Como 7
·
0⤊
0⤋
7(2n-2) = (3n+2)+3 simplify
14n-14 = 3n +5 bring like terms together
14n - 3n = 5+14 simplify
11n = 19 get n by itself
n = 19/11
2007-09-26 15:32:28
·
answer #2
·
answered by Les 2
·
0⤊
0⤋
7(2n - 2) = (3n + 2) + 3
14n - 14 = 3n + 2 + 3
11n = 19
n = 19/11
Answer: n = 19/11 or 1 8/11
Proof:
7(2[19/11]] - 2) = (3[19/11] + 2) + 3
7(38/11 - 2) = 57/11 + 2 + 3
266/11 - 14 = 57/11 + 5
24 2/11 - 14 = 5 2/11 + 5
10 2/11 = 10 2/11
2007-09-26 15:41:50
·
answer #3
·
answered by Jun Agruda 7
·
2⤊
0⤋
. . . 5 . . . . . . 3 . . . . 2 ––––––– – –––––– = –– .n² – 3n . . . n – 3 . . .n . . . 5 . . . . . . 3(n) . . . . .2 ––––––– – ––––––––– = –– .n² – 3n . . .(n – 3)(n) . . .n . . . 5 . . . . . . 3n . . . . 2 ––––––– – ––––––– = –– .n² – 3n . . .n² – 3n . . .n . 5 – 3n . . .2 ––––––– = –– . . . . . . . <- pass multiply .n² – 3n . . .n n(5 – 3n) = 2(n² – 3n) n(5 – 3n) = 2n(n – 3) . . <- divide the two factors with the aid of n 5 – 3n = 2(n – 3) 5 – 3n = 2n – 6 . . . . . . .<- rearrange -3n – 2n = -6 – 5 -5n = -11 . . . . . . . . . . . <- divide the two factors with the aid of -5 . . . .-11 n = –––– . . . . -5 . . . .11 n = ––– . . . ..5 Numerator = 11 accomplished
2016-10-20 02:34:01
·
answer #4
·
answered by ? 4
·
0⤊
0⤋
7(2n-2)=(3n+2)+3
14n-14 = 3n+2+3
14n-3n = 14+2+3
11n = 19
n = 19/11
2007-09-26 15:32:10
·
answer #5
·
answered by Anonymous
·
0⤊
0⤋
7(2n-2)=(3n+2) +3
14n-14=3n+2 +3
14n -14=3n+5
14n=3n+19
11n=19
n=19/11 or 1 8/11
2007-09-26 15:31:59
·
answer #6
·
answered by ladyplaya21 2
·
0⤊
0⤋
7 (2n - 2) = (3n + 2) + 3
14n - 14 = 3n + 5
11n = 19
n = 19/11
2007-09-26 15:30:24
·
answer #7
·
answered by Anonymous
·
0⤊
0⤋
14n-14 = 3n+5 11n=19 n=19/11
2007-09-26 15:31:26
·
answer #8
·
answered by dwinbaycity 5
·
0⤊
0⤋
14N - 14= 3N+2+3
14N- 3N=2+3+14
11N=19
N=1.72727
2007-09-26 15:31:13
·
answer #9
·
answered by Anonymous
·
0⤊
0⤋
14n-14=3n+2+3
14n-14=3n+5
14n-14+14=3n+5+14
14n=3n+19
14n-3n=3n-3n+19
11n=19
n=19/11
2007-09-26 15:35:39
·
answer #10
·
answered by Dave aka Spider Monkey 7
·
0⤊
0⤋