English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-09-16 17:57:23 · 5 answers · asked by Anonymous in Science & Mathematics Mathematics

5 answers

x² + 3x - 10 = (x+5)(x-2)
x² + 8x + 15 = (x+3)(x+5)
x² + 5x + 6 = (x+2)(x+3)
x² + 4x + 4 = (x+2)(x+2)

(x^2+3x-10 / x^2+8x+15)*(x^2+5x+6 / x^2+4x+4)
= (x+5)(x-2)(x+2)(x+3) / [(x+3)(x+5)(x+2)(x+2)]
= (x-2) / (x+2)

2007-09-16 18:07:05 · answer #1 · answered by gudspeling 7 · 0 0

(x^2+3x-10 / x^2+8x+15)x(x^2+5x+6 / x^2+4x+4)=
factor all the quadratics and you have 4
x^2+3x-10 = (x+5)(x-2)
x^2+8x+15 = (x+3)(x+5)
x^2+5x+6 = (x+3)(x+2)
x^2+4x+4 = (x+2)(x+2)
So we have:
[(x+5)(x-2)/(x+3)(x+5)]X[(x+3)(x+2)/(x+2)(x+2)]

Now, cancel common terms from the numerators and denominators to get:
(x-2)/(x+2)

2007-09-17 01:16:33 · answer #2 · answered by 037 G 6 · 1 0

x^2+3x-10 = (x+5)(x-2)
x^2+8x+15 = (x+5)(x+3)
x^2+5x+6 = (x+3)(x+2)
x^2+4x+4 = (x+2)^2
[(x-2)/(x+3)]*[((x+3)/(x+2)]
(x-2)/(x+2)

2007-09-17 01:03:37 · answer #3 · answered by xandyone 5 · 1 0

Factor all the quadratics:
((x+5)(x-2)/(x+5)(x+3)) * ((x+2)(x+3)/(x+2)(x+2))
Divided out like expressions:
((x-2)/(x+3))*((x+3)/(x+2))
Multiply:
((x-2)(x+3)/(x+3)(x+2))
Divide out like expressions again:
(x-2)/(x+2)
And there's your simplified expression.

2007-09-17 01:09:06 · answer #4 · answered by streetballa935 2 · 1 0

first thing, factor out the equations
[(x+5)(x-2)]/[(x+5)(x+3)] * [(x+3)(x+2)]/[(x+2)(x+2)] ==>
[(x-2)/(x+3)] * [(x+3)/(x+2)] ==>
therefore, the answer is ==> (x-2)/(x+2)

2007-09-17 01:08:01 · answer #5 · answered by clark k 2 · 1 0

fedest.com, questions and answers