English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

3 answers

When differentiating with respect to x, treat y as a constant, and vice versa. Thus,
[1/(2x^2 + y - z^3)]*[4x - (3z^2)*(dz/dx)] = 1; now solve for dz/dx.

For y, we have [1/(2x^2 + y - z^3)]*[1 -(3z^2)*(dz/dy)] = 0. Again, solve for dz/dy.

2007-09-16 01:12:27 · answer #1 · answered by Tony 7 · 0 0

ln(2x^2 + y - z^3) = x
2x^2 + y - z^3=e^x
z^3=2x^2 + y -e^x
dz/dx=(4x-e^x)/(3z^2)
dz/dy=1/(3z^2)

2007-09-16 10:30:26 · answer #2 · answered by marcus101 2 · 0 0

32rf43f34g

2014-08-05 20:13:23 · answer #3 · answered by Anonymous · 0 0

fedest.com, questions and answers