English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Find all roots of the polynomial P(x) = x^ 4 + 9.

a. (±√ 3 ± i √3)/2

b. (−√ 6 ± i √6)/2

c. ± √3i and ±√ 3

d. (± √6 ± i √6)/2

e. (± √3 ± i √6)/2

2007-09-14 01:48:28 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

X^4=-9= 9 so x= sqrt(3) <(pi/4+kpi/2) k=0,1,2,3
for

k=0 x= (sqrt6+isqrt6)/2 and so on solution d)

2007-09-14 02:23:12 · answer #1 · answered by santmann2002 7 · 0 0

P(x) = x ^4 + 9
0 = x^4 + 9

Doing y = x² (1):

0 = y² +9

y² = - 9
y' = 3i
y" = -3i

Substituing in (1):
y' = x'²
3i = x'²
x' =√3*√i
x' = √3*√i
x' =√3*√√-1
x' = 3² ^(1/4)*-1^1/4
x' = (3²*-1) ^(1/4)
x' = (-3²) ^(1/4)
x' = (-3) ^(1/2)
x' = √ -3
x' = √ 3*√ -1
x' = ± √3 i

y" = x"²
-3i = x"²
x" = √-3*√i
x" = √-3*√√-1
x" = √-3*1^(1/4)
x" = (-3)²^(1/4)*1^(1/4)
x" = 9^(1/4)*1^(1/4)
x" = (9*1)^(1/4)
x" = 9^(1/4)
x" = 3²^(1/4)
x" = 3^(1/2)
x" = ± √3

Answer: letter c


*********
Conferring:

x' = ± √3 i
x" = ± √3

x ^4 + 9 = 0

for x = √3 i

(√3 i)^4 = -9
√(3^4)* i^4 = -9
√81 * 1 = -9
√81 = -9 (OK)

for x = -√3 i

(-√3 i)^4 = -9
(-√3)^4* i^4 = -9
√(3^4)* 1= -9
√(3^4)= -9
√81 = -9 (OK)

for x = √3

(√3)^4 = -9
√(3^4)= -9
√81 = -9 (OK)

for x = -√3

(-√3)^4 = -9
√(3^4)= -9
√81 = -9 (OK)




Kisses from Brazil

=**

2007-09-14 02:41:49 · answer #2 · answered by Math Girl 7 · 1 0

fedest.com, questions and answers