English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

How do i use the definition of the derivititve to find f(x)= x + sqrt (x)

2007-09-12 16:05:50 · 3 answers · asked by Christine N 1 in Science & Mathematics Mathematics

3 answers

The definition of the derivative is
f'(x) = lim(1/h){f(x + h) -f(x)}
h->0
f'(x) =(1/h){ (x + h) + √(x + h) - [x + √x]}

f'(x) = (1/h){ h + √(x + h) - √x}
f'(x) = 1 + [√(x + h)] -√x]/ h
Multiply top and bottom of second term by [√(x + h)] +√x]
f'(x) = 1 + [√(x + h)] -√x][√(x + h)] +√x]/ h[√(x + h)] +√x]
f'(x) = 1 + [x + h - x]/h[√(x + h)] +√x]
f'(x) = 1 + h/h[√(x + h)] +√x]
f'(x) = 1 + 1/[√(x + h)] +√x]
but remember this is a limit as h--> 0
f'(x) = 1 + 1/(2√x)

2007-09-12 16:43:52 · answer #1 · answered by dr_no4458 4 · 0 0

Since you asked for a computation straight from the definition:

[h→0]lim (f(x+h) - f(x))/h
[h→0]lim ((x+h + √(x+h)) - (x + √x))/h
[h→0]lim (h + √(x+h) - √x)/h
[h→0]lim h/h + (√(x+h) - √x)/h
[h→0]lim 1 + (x+h - x)/(h(√(x+h) + √x))
[h→0]lim 1 + h/(h(√(x+h) + √x))
[h→0]lim 1 + 1/(√(x+h) + √x)
1 + 1/(√(x+0) + √x)
1 + 1/(2√x)

2007-09-12 16:47:40 · answer #2 · answered by Pascal 7 · 0 0

sqrt (x) = x^(1/2)

f(x) = x + x^(1/2)
f'(x) = 1 + (1/2)x^(-1/2)

2007-09-12 16:14:36 · answer #3 · answered by Frome 4 · 0 1

fedest.com, questions and answers