English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Find the radius of curvature and the center of curvature for f (t) = at t =pi/2

2007-09-10 21:55:55 · 3 answers · asked by Anonymous in Science & Mathematics Mathematics

3 answers

x= t cos t
y=tsin t
dx= (cos t-tsin t)dt
dy =(sint+tcost) dt so dy/dx = (sint+tcost)/(cost-tsint)=1/(-pi/2)

r= (1+y´^2)^3/2 /y´´
dy´/dx = =dy´/dt *dt/dx = 1/(cos t-t sin t)^2 =*[(cost-tsint)(cost+cos t-tsint )-(sin t+tcost)(-sint-sint-tcost)] *
1/(cost-tsint)

=1/(pi/2)^2 *[(-pi/2)^2-(pi/2(-2)]*(-2/pi) = 2/(pi/2)^2-1/(pi/2)

r=(1+1/(pi/2)^2)3/2 /[2/(pi/2)^2-1/(pi/2)
Maybe it is shorter passing to polar coordinates
x^2+y^2=t^2 so r=t and y/x =tan@=tan t so @=t
and
r=@ is the polar equation
radius= =(@^2+1)^3/2/[@^2+2]=((pi/2)^2+1))^3/2/((pi/2)^2+2))

and the center has coordinates
xc=-pi/2 yc=pi/2

2007-09-11 02:10:47 · answer #1 · answered by santmann2002 7 · 0 0

you have to show f(x)-sinx=0 for all pi/2

2016-05-17 04:57:42 · answer #2 · answered by Anonymous · 0 0

they are both there
http://answers.yahoo.com/question/index;_ylt=AhX2nHtMcw0MZ7fVrWV92R7sy6IX;_ylv=3?qid=20070911015404AAByGde

2007-09-11 01:21:58 · answer #3 · answered by Anonymous · 0 0

fedest.com, questions and answers