English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-09-06 16:08:17 · 4 answers · asked by Riaz J 1 in Science & Mathematics Mathematics

4 answers

Use the chain rule:

sin^4 (5Θ)

Differentiate the fourth power:

4sin³(5Θ)

Differentiate the sin(5Θ):

4sin³(5Θ)cos(5Θ)

Differentiate 5Θ

4sin³(5Θ)cos(5Θ)(5)

Simplify:

20sin³(5Θ)cos(5Θ)

2007-09-06 16:16:48 · answer #1 · answered by сhееsеr1 7 · 0 3

y = sin^4(5 theta). Power rule: d u^n = n u^(n-1) du, so

dy/d theta = 4 sin^3(5 theta) d (sin(5 theta)), by chain rule. d sin(u) = cos u du, so

= 4 sin^3(5 theta) cos (5 theta) d (5 theta), chain rule
= 4 sin^3(theta) cos (5 theta) 5 d theta/d theta, so you stop, or
= 20 sin^3(theta) cos (5 theta).

2007-09-06 23:18:10 · answer #2 · answered by pbb1001 5 · 0 1

20 sin^3 (5 theta) cos(5*theta)

2007-09-06 23:14:34 · answer #3 · answered by Demiurge42 7 · 0 1

y = sin^4 (5θ)
so dy/dθ = 4 sin^3 (5θ) d/dθ sin (5θ)
= 4 sin^3 (5θ) cos (5θ) . 5
= 20 sin^3 (5θ) cos (5θ)

2007-09-06 23:17:04 · answer #4 · answered by Scarlet Manuka 7 · 0 0

fedest.com, questions and answers