I won't solve it for you, but I'll show you how to do it.
Let the smallest number be 2n (that makes it even).
Then the others are 2n+2 and 2n+4 (because they are consecutive).
The question therefore states that
3(2n+4) = 2*2n + 38
Simply solve for n, from which you can get the numbers (2n, 2n+2, 2n+4).
2007-09-05 13:34:46
·
answer #1
·
answered by SV 5
·
0⤊
1⤋
So, you have three consecutive, even integers, like 2, 4, and 6. But instead, we'll call them x, x+2, and x+4.
So, we can make an equation for this problem. The greatest integer, x+4, is multiplied by 3. We can write that like this:
3(x+4) =
And that exceeds twice the least (2x) by 38. We can write the rest like this:
3(x+4) = 2x + 38
Now, solve the equation for x, knowing that x is the least integer.
3x + 12 = 2x + 38
x = 26
x+2 = 28
x+4 = 30
And there's your answer! Go ahead and check it:
three times the greatest (30x 3 = 90) exceeds twice the least (2x = 52) by 38.
90-52=38
So, the answer is 26, 28, and 30.
2007-09-05 20:39:11
·
answer #2
·
answered by Gary 6
·
0⤊
0⤋
3(x+4) = 2x + 38
3x + 12 = 2x + 38
x = 26
So the integers are 26, 28 and 30
2007-09-05 20:36:55
·
answer #3
·
answered by Becky M 4
·
0⤊
0⤋
3(2x + 4) = 2(2x) + 38
=> 2x = 26
=> x = 13
numbers are 2x, 2x + 2, 2x + 4
or 2(13), 2(13) + 2, 2(13) + 4
26, 28 and 30
2007-09-05 20:38:46
·
answer #4
·
answered by sv 7
·
0⤊
0⤋
your variables: x, x+2, x+4
your equation: 3(x+4) = 2x + 38
2007-09-05 20:34:21
·
answer #5
·
answered by Rich 4
·
0⤊
0⤋