English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

On a particular day, a town's electricity usage can be approximated by a sinusoidal function U(t) where t=0 corresponds to midnight. The function has a period of 24 hours and goes from a low of 30,000 kilowatts at 6 A.M. to a high of 60,000 kilowatts at 6 P.M. Write a formula for U(t)

2007-09-04 02:12:44 · 3 answers · asked by Ask or Answer 2 in Science & Mathematics Mathematics

3 answers

LOL. This can be in sine or cosine... §

I will use U(t) = A sin(kt + b) + H

period: 2π/k = 24 ... k = π/12
since the 6AM is the lowest point, the zeros are on 12 midnight and 12 noon. We can use the 12 midnight as the starting point but that will imply the sine function is negative.

amplitude: [60 - 30] / 2 = 15 , in thousands.

middle: [60+30]/2 = 45 , in thousands.

Thus U(t) = - 15,000 sin(π·t/12) + 45,000. t is in hours.

2007-09-04 02:28:28 · answer #1 · answered by Alam Ko Iyan 7 · 0 0

P= A +B sin(pi/12 t) as w=2pi/T
for t = 6A.M
30,000 = A+B
for t = 6 P.M = 18 h
60,000= A-B
A = 45,000 and B = -15,000
U(t) = 45,000- 15,000 sin (pi/12*t) 0<=t<=24

2007-09-04 09:51:11 · answer #2 · answered by santmann2002 7 · 0 0

U(t) is a semi-function of sin-graph...

2007-09-04 09:20:54 · answer #3 · answered by raja 2 · 0 0

fedest.com, questions and answers