English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Prove the identity (sec x + tan x)^2 = (1 + sin x) / (1 - sin x)

2007-09-03 19:54:11 · 2 answers · asked by whatagowk 2 in Science & Mathematics Mathematics

2 answers

LHS
(1 / cos x + sin x / cos x) ²
(1 + sin x) ² / cos ² x
(1 + sin x) ² / (1 - sin ² x)
(1 + sin x) ² / (1 - sin x)(1 + sin x)
(1 + sin x) / (1 - sin x)

RHS
(1 + sin x) / (1 - sin x)

LHS = RHS

2007-09-07 19:47:43 · answer #1 · answered by Como 7 · 0 0

(sec x + tan x)^ 2 = (1+sin x) / ( 1 -sin x)
sec ^2 x + 2 sec x tan x + tan^2 x
(1/ cos^2 x) + 2 (sin x/ cos^2 x) + (sin^2 x/cos^2 x)
(1+2sinx + sin^2x)/ (cos^2 x)
(1+ sin x)^2 / (1-sin^2 x) cancel the common 1+ sin x
(1+ sin x) / ( 1-sin x)

2007-09-04 04:38:25 · answer #2 · answered by james w 5 · 0 0

fedest.com, questions and answers