2x^2 + 5x = 0
x(2x+5) = 0
x = 0; x = -5/2
2007-09-02 01:12:07
·
answer #1
·
answered by Anonymous
·
0⤊
0⤋
this is a basic quadratic equation. we can solve this by first isolating all constants (numbers) and variables to one side of the equation:
known as the standard form
2x^2 + 5x = 0
then by factoring,
x(2x+5)=0
As shown in the equation, the product of the two factors is equal to zero. therefore, one or either of the factor can be equal to zero
x=0
and
2x+5=0 --> 2x = -5 --> x = -5/2
therefore x can be 0 and -5/2
2007-09-02 01:19:13
·
answer #2
·
answered by deus c 2
·
0⤊
0⤋
factor out an x:
x(2x+5)=0
then set each factor equal to 0, because when you multiply, if at least one factor equals 0, the equation equals 0.
x=0 and (2x+5)=0
x=0,-5/2
2007-09-02 01:27:36
·
answer #3
·
answered by sayamiam 6
·
0⤊
0⤋
2x^2 + 5x = 0
x(2x+5) = 0
x = 0; x = -5/2
2007-09-06 01:08:46
·
answer #4
·
answered by sunil 2
·
0⤊
0⤋
x(2x+5)=0 factor
x=0 and x=-2 1/2
yeah i agree with this dude except my teacher didnt like improper fractions so i just divided it
2007-09-02 01:15:26
·
answer #5
·
answered by Anonymous
·
0⤊
0⤋
2x^2 = -5x
2x = -5x/x
2x = -5
2 = -5/2
x = -2 1/2
2007-09-02 01:21:38
·
answer #6
·
answered by quatt47 7
·
0⤊
1⤋