English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

If a, b, c are three positive numbers such that a + b + c = 1, prove that ab + bc + ac ≤ 1/3

[HINT: Use a² + b² ≥ 2ab etc, & use square of trinomial]

2007-08-31 16:29:44 · 2 answers · asked by Akilesh - Internet Undertaker 7 in Science & Mathematics Mathematics

2 answers

a + b + c = 1
(a + b + c)² = 1
a² + b² + c² + 2(ab + bc + ac) = 1
a² + b² + c² = 1 - 2(ab + bc + ac)

a² + b² ≥ 2ab --(1)
b² + c² ≥ 2bc --(2)
a² + c² ≥ 2ac --(3)

(1)+(2)+(3),

2(a² + b² + c²) ≥ 2(ab + bc + ac)
a² + b² + c² ≥ ab + bc + ac
1 - 2(ab + bc + ac) ≥ ab + bc + ac
3(ab + bc + ac) ≤ 1
ab + bc + ac ≤ 1/3

2007-08-31 17:06:48 · answer #1 · answered by bilbo 3 · 4 1

ans.
1/r =1/a +1 /b + 1/c
.
1/r = bc/abc +ac/abc+ab/abc
.
1/r = ab+bc+ac /abc
ab+bc+ac = abc /r=abc/(3abc(a+b+c)) =<1/3

2007-09-01 03:23:17 · answer #2 · answered by Tuncay U 6 · 1 1

fedest.com, questions and answers