English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

integrate: arctan(7z)dz

2007-08-28 07:15:12 · 7 answers · asked by the man 2 in Science & Mathematics Mathematics

7 answers

♦ =x* atan(7x) –ln(1+(7x)^2) /14 +C;
switch on your cap-carrier;

2007-08-28 07:45:35 · answer #1 · answered by Anonymous · 0 0

First, let's put u = 7z, z = u/7 dz = 1/7 du.
Then the integral becomes
1/7* ∫ arctan u du.
Next, we do the last integral by parts.
Let
U = arctan u dV = du
dU = du/(1+u²) V = u
So we have
1/7∫ arctan u du = 1/7*[u arctan u -½∫ 2u du/(1+u²) ] =
1/7*[ u arctan u - ½ ln(1+u²) ].
Since u = 7z, our final result is
z arctan 7z - 1/14*ln(1 + 49z²) + C.

2007-08-28 14:38:18 · answer #2 · answered by steiner1745 7 · 0 0

integral arctan(7z)dz
= 7z arctan7z - .5ln(1+49z^2) + C

2007-08-28 14:26:10 · answer #3 · answered by ironduke8159 7 · 0 0

use an integral table or the ti-89

[integral] arctan x dx = x arctan x - (1/2) ln(1+x^{2}) + C

so integrate: arctan(7z)dz

7z arctan 7z - (1/2) ln(1+49z^{2}) + C

2007-08-28 14:21:01 · answer #4 · answered by isock86 3 · 0 0

I think it gets easier if we first find the integral of arctan(x). Put x = tan(t), so that dx = sec^2(t) dt. So, we get

Int t sec^2(t) dt Now, put u = t and dv = sec^2(t) dt, so that v = tan(t) and du = dt.

By parts, Int t sec^2(t) dt = t tan(t) - Int tan(t) dt
We know Int tan(t) dt = Int sin(t)/cos(t) dt = - ln(cos(t).

So, Int t sec^2(t) dt = t tan(t) - ln(cos(t) + C.
Since x = tan(t), t = arctan(x). sec^2(t) = 1/cos^2(t) = 1 + tan^2(t) = 1 + x^2, so that cos(t) = 1/(1 + x^2)^(1/2). It follows that

Int arctan(x) dx = x arctan(x) - ln((1+ x^2)^(-1/2) + C = x arctan(x) + (1/2) ln(1+ x^2) + C

Now, Int arctan(7z)dz = 1/7 Int arctan(7z) 7 dz= (1/7) [7z arctan(7z) + (1/2) ln(1+ 49z^2)] + C

2007-08-28 15:12:39 · answer #5 · answered by Steiner 7 · 0 0

You can only accomplish that by partial integration :
Integ(f'g) = [fg] - Integ(fg')
Take f'=dz => f = z
Take g=arctan(7z) => g' = 7/(1+49z²)
So we have : [z arctan(7z)] - Integ(7z dz/(1+49z²))
and the last integral is Integ((1/14)d(1+49z²)/(1+49z²))
= 1/14 log(1+49z²)
So the soluton is : z arctan(7z) - log(1+49z²)/14.

2007-08-28 14:29:20 · answer #6 · answered by ?????? 7 · 0 0

Integration by parts:
let u=arctan(7z), then dv = dz.
Therefore,
du = 7dz/(1+49z^2)
v = z

The initial integral =
z arctan(7z)-∫7zdz/(1+49z^2)

To find ∫7zdz/(1+49z^2),
substitute t=1+49z^2.
Then dt=98zdz and 7zdz=(1/14)dt
Finally we get
∫7zdz/(1+49z^2)
=(1/14)∫dt/t
=(1/14) ln|t| + C
=(1/14) ln(1+49z^2) + C

The final answer is:
z arctan(7z) - (1/14) ln(1+49z^2) + C

2007-08-28 14:30:46 · answer #7 · answered by Anonymous · 1 1

fedest.com, questions and answers