See the inductive process here :
11 -- 2 = 9 and sqrt(9) = 3
1111 -- 22 = 1089 and sqrt(1089) = 33
111111 -- 222 = 110889 and sqrt110889 = 333 and so on up to
20 ones -- ten twos
= 11111111108888888889 and
sqrt(11111111108888888889)
= 3333333333
=> sqrt(20ones -- 10twos) = 10threes.
2007-08-27 13:47:59
·
answer #1
·
answered by sv 7
·
1⤊
0⤋
The 20 ones, 10 ones, and 10 threes can be expressed as a finite geometric series
sum = (a -a*r^n)/(1-r)
20 ones = (1-1*10^20)/(1-10) =(10^20 -1)/9
10 twos = (2-2*10^10)/(1-10) =(2*10^10- 2)/9
10 threes = (3-3*10^10)/(1-10) =(3*10^10 -3)/9
sqrt(20 ones - 10 twos) = 10 threes
20 ones - 10 twos = (10 threes)^2
(10^20 -1)/9 -(2*10^10- 2)/9 = ((3*10^10 -3)/9 )^2
combine the first two parts on the left side
(10^20 -2*10^10 +1)/9 = ((3*10^10 -3)/9 )^2
Divide the top and bottom of the right side by 3
(10^20 -2*10^10 +1)/9 = ((10^10 -1)/3 )^2
expand the square on the right side
(10^20 -2*10^10 +1)/9 = (10^20 -2*10^10 +1)/9
multiply both sides by 9
(10^20 -2*10^10 +1) = (10^20 -2*10^10 +1)
The left and right side are equal
2007-08-27 15:03:37
·
answer #2
·
answered by PC_Load_Letter 4
·
0⤊
0⤋
Let's say, Y = 10^9 + 10^8 + ... + 10^0 (10 ones)
So
20 ones
= 10^19 + .. +10^10 + 10^9 + ... + 10^0
= 10^10 * (10^9 + 10^8 + ... + 10^0) + (10^9 + 10^8 + ... + 10^0)
= 10^10 * Y + Y
10 twos
= 2 * 10^9 + 2 * 10^8 + ... + 2 * 10^0
= 2 * (10^9 + 10^8 + ... + 10^0)
= 2Y
and,
10^10 (10000000000 = 9999999999+1)
= 9*10^9 + 9*10^8 + ... + 9 * 10^0 + 1
= 9*(10^9 + ... +10^0)+1
= 9Y+1
Therefore,
sqrt(20 ones - 10 twos)
= sqrt(10^10 * Y + Y - 2Y)
= sqrt((9Y+1) Y - Y)
= sqrt(9Y^2 + Y - Y)
= sqrt(9Y^2)
= 3Y
= 3 * (10^9 + 10^8 + ... + 10^0)
= 3333333333 ( 10 threes )
2007-08-27 14:25:10
·
answer #3
·
answered by EWANG 2
·
0⤊
0⤋
sqrt(11111111111111111111 - 2222222222)=
sqrt(11111111108888888889) = 3333333333
2007-08-27 13:46:32
·
answer #4
·
answered by mohanrao d 7
·
0⤊
0⤋
Please mouse over the dots to see complete answer.
sqrt(11111111111111111111-2222222222)=3333333333
2007-08-27 13:45:10
·
answer #5
·
answered by ironduke8159 7
·
0⤊
0⤋