English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Use the rules of differentiation to find the derivatives of the following function. Simplify terms wherever possible, but it is not necessary to factorise and then cancel any of the expressions.

2007-08-14 22:29:01 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

PLEASE GIV FULL WORKING

2007-08-15 22:58:30 · update #1

2 answers

g(x) = 14 x / x ³ - 35 x^( 3 / 2 )
g(x) = 14 x^( - 2 ) - 35 x^( 3 / 2 )
g `(x) = ( - 28 ) x^(- 3) - (105 / 2) x^(1 / 2)
g `(x) = (- 28) / x ³ - (105 / 2) √x

2007-08-18 20:25:26 · answer #1 · answered by Como 7 · 0 0

g(x)=7x (2/(x^3) - 5 sq root x)

we distribute 7x factor hence

g(x)= 14 x / (x^3) - 35 x sq root x

but sq root x = x^(1/2) hence

g(x)= 14 / (x^2) - 35 x^(3/2)
= 14 x^-2 -35 x^(3/2)

We then use the following derivative rules:
1/ f(x) = a(x)+b(x) hence f'(x) = a'(x)+b'(x)
2/ f(x) = Cx^B hence f'(x) = CB x^(B-1)

hence

g'(x)= 14*(-2)* x^(-2-1) -35*(3/2) x^((3/2)-1)

hence

g'(x)= -28 * x^-3 - 105/2*x^(1/2)

and we simplify to get

g'(x)= -28 /(x^3) -52.5 sq root x

2007-08-15 08:24:34 · answer #2 · answered by cd4017 4 · 0 0

fedest.com, questions and answers