first, let's clear parentheses by distributing:
1-8y +y > 32y - 1.6
Now we can put the y terms on the left and the constants on the right, combining them to get:
-39y > -2.6
Let's divide by -39, keep in mind this changes the inequality's direction:
y< 2.6/39
2.6/39 should be simplified first to 26/390, then reduced to 1/15
final answer: y< 1/15, or
y < 0.06666. . . .
2007-08-14 07:06:05
·
answer #1
·
answered by Marley K 7
·
0⤊
1⤋
2(0.5-4y)+y >(4y-0.2)8 ----- first multiply the number outside the parentheses to each of the number inside the parentheses.
(2*0.5) + (2*-4y) + y > (4y*8) + (-0.2*8) -- then do the operation indicated
1 - 8y + y > 32y - 1.6 ---- combine like terms
1-7y > 32y - 1.6 --- transpose like terms to the other side
1 + 1.6 > 32 y + 7y
0.066667 > y --- or
y < 0.06667
this means that "y" CAN be ANY number below 0.06 (or 0.07 if rounded of to nearest hundreths)
for example, if y = 0.05 (since 0.05 is less than 0.06)
2 [0.5 - 4(0.05)] + 0.05 > [4(0.05] - 0.2]8
1 - 0.4 + 0.05 > (0.2 - 0.2) 8
0.65 > ( 0 ) 8
0.65 > 0
for example if y = 0.02 ( since 0.02 is less than 0.06)
2 [ 0.5 - 4(0.02)] + 0.02 > [4(0.02) - 0.2] 8
2 ( 0.5 - 0.08) + 0.02 > (0.08 - 0.2) 8
2(0.42) + 0.02 > (-0.12) 8
0.84 + 0.02 > -0.96
0.86 > -0.96
>>> hope u understand all of it.
peace~ :)
2007-08-14 14:26:26
·
answer #2
·
answered by muzikero_ipe 1
·
0⤊
0⤋
Expand this out to
1 - 8y + y > 32y - 1.6
therefore
(1-7y) > (32y-1.6)
2.6 > 39y
0.066 > y
2007-08-14 14:02:53
·
answer #3
·
answered by shahlordsaway 2
·
0⤊
1⤋
2(0.5-4y)+y>(4y-0.2)8
1-8y+y>32y-1.6
2.6>39y
0.066666666 ........>y
2007-08-14 14:01:02
·
answer #4
·
answered by Anonymous
·
0⤊
0⤋
1-8y+y>32y-1.6
1-7y>32y-1.6
2.6>39y
2.6/39>y
2/30>y
1/15>y
2007-08-14 14:55:23
·
answer #5
·
answered by Dave aka Spider Monkey 7
·
0⤊
0⤋