English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

simplify the expression. Assume (a) and (b) are positive real numbers and (m) and (n) are rationalal numbers.

2007-08-12 06:37:01 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

{(a^-3/m)(b^6/n) / (a^-6/m)(b^9/n)}^ -1/3
= {(a^(-3)/m)*(b^6/n) * (m/(a^(-6)) * (n/(b^9))} ^(-1/3)
= {(a^(-3)) * (b^6)*(1/(a^(-6))*(1/(b^9))} ^(-1/3)
= {(1/(a^(-3))*(1/(b^3))}^(-1/3)
= {a^3*b^(-3)}^(-1/3)
= {a^(-1)*b}
= b/a
-

2007-08-12 07:02:04 · answer #1 · answered by oregfiu 7 · 1 0

{(a^-3/m)(b^6/n) / (a^-6/m)(b^9/n)}^ -1/3? \

{(a^-3/m)(b^6/n) * (m/a^-5)(n/b^9 )}^-1/3 =

= {(a^-3 * b^6)/mn * mn/(a^-5 * b^9)}^-1/3 =

= {(a^-3 * b^6)/(a^-5 * b^9)}^-1/3 =

= {a^-3 * b^6 * a^5 * b^-9} ^ -1/3 =

= (a^2 * b^-3)^-1/3 = (a^2/b^3)^-1/3 =

= 1/(a^2/b^3)^(1/3) = (b^3/a^2)^1/3 =

= b / a^(2/3) = [b*a^(1/3)]/a

2007-08-12 06:49:15 · answer #2 · answered by Amit Y 5 · 0 0

fedest.com, questions and answers