English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-08-08 04:51:08 · 2 answers · asked by toshi 1 in Science & Mathematics Mathematics

2 answers

cos x = sum from n=0 to inf of (-1)^n * x^(2n)/(2n)!

cos 2x =
= sum from n=0 to inf of (-1)^n * (2x)^(2n)/(2n)! =
= sum from n=0 to inf of (-1)^n *2^2n * x^(2n)/2n! =
= sum from n=0 to inf of (-1)^n * 4^n * x^(2n)/2n! =
= 1 - 4x^2/2 + 16x^4/24 - 64x^6/720 +- ...

2007-08-08 04:59:57 · answer #1 · answered by Amit Y 5 · 0 0

Let f(x)=cos 2x. =>f(0)=cos 0=1

Differentiating successively with respect to x,

f'(x)=-2sin 2x =>f'(0)=-2(0)=0

f"(x)=-4cos 2x =>f"(0)=-4(1)=-4

f"'(x)=8sin 2x =>f"'(0)=8(0)=0

f""(x)=16cos 2x =>f""(0)=16(1)=16

According to McLaurin's series,

f(x)=f(0)+(x/1!)(f'(0)+[(x^2)/2!](f"(0)+[(x^3)/3!](f"'(0)+[(x^4)/4!](f""(0))+......................

cos 2x=1+(x/1!)(0)+[(x^2)/2!](-4)+[(x^3)/3!](0)+[(x^4)/4!](16)+..............

cos 2x=1-4[(x^2)/2!]+16[(x^4)/4!]+...............

cos 2x=1-4[(x^2)/2]+16[(x^4)/24]+...............

cos 2x=1-2(x^2)+(2/3)(x^4)+...............

2007-08-08 12:46:27 · answer #2 · answered by davidcjo5 4 · 0 0

fedest.com, questions and answers