English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

How do I take the intergral of (8x+11)/(x^2+9) dx?

2007-08-01 06:43:11 · 4 answers · asked by jennifer 1 in Science & Mathematics Mathematics

4 answers

I = 4 ∫ ( 2x + 11/4 ) / (x² + 9) dx
I = 4 ∫ (2x) / (x² + 9) dx + 11 ∫ 1 / (x² + 3²) dx
I = 4 log (x² + 9) + (11/3) tan^(-1) (x / 3) + C

2007-08-05 00:29:35 · answer #1 · answered by Como 7 · 0 0

Split into 2 fractions:
∫ (8x+11)/(x²+9) dx
∫ (8x)/(x²+9) dx + ∫ 11/(x²+9) dx
8∫ x/(x²+9) dx + 11∫ 1/(x²+9) dx

Use u-substitution for the first integral.
u = x²+9
du = 2x dx
du/2 = x dx
8∫ 1/(u) du/2
4 ln|u| = 4ln|x²+9|

The second integral is in the form ∫1/(u²+a²) dx which is
1/a * arctan(u/a).
So the second integral is 11* 1/3 * arctan(x/3)

So the final answer is:
4ln|x²+9| + 11/3 arctan(x/3) + C

2007-08-01 06:53:46 · answer #2 · answered by MathGuy 6 · 0 0

∫8x^3+11x^2+72x +99 dx= 2x^4+11/3 x^3 +36x^2 +99x + c

2007-08-01 06:49:20 · answer #3 · answered by mramahmedmram 3 · 0 0

Split it into
8x/(x^2+9) + 11/(x^2+9)

The first one is ln(), and the second one is arctan()

2007-08-01 06:46:56 · answer #4 · answered by Alexander 6 · 1 0

fedest.com, questions and answers