English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-07-27 06:56:05 · 5 answers · asked by shivanand mogha 1 in Science & Mathematics Mathematics

5 answers

A fairly clear expalnation of tensors is given at:
http://planetmath.org/encyclopedia/Tensor.html
Run cursor over link to see entire link.

2007-07-27 07:13:04 · answer #1 · answered by ironduke8159 7 · 0 0

This is what i have learnt on my own (very basic) -
Tensors are physical quantities that are neither vectors nor scalars. This definition is entirely in terms of physics.

This is what wiki says -
The term ‘tensor’ has slightly different meanings in mathematics and physics. In the mathematical fields of multilinear algebra and differential geometry, a tensor is a multilinear function. In physics and engineering, the same term usually means what a mathematician would call a tensor field: an association of a different (mathematical) tensor with each point of a geometric space, varying continuously with position.

I won't try and shoot the ****.. Just look it up here..
http://en.wikipedia.org/wiki/Tensor

2007-07-27 07:22:07 · answer #2 · answered by Aakash Saikia 1 · 0 0

It is actually a quantity that is neither a vector nor a scalar.It simply means that it neither fits into the dscription of scalars nor in vectors.example:Moment of inertia

2007-07-27 07:18:07 · answer #3 · answered by aviral17 3 · 0 0

quantities which are niether vectors nor scalars are called Tensors.Eg:Pressure

2007-07-28 06:10:13 · answer #4 · answered by punit g 2 · 0 0

HISTORY
The word tensor was introduced in 1846 by William Rowan Hamilton[1] to describe the norm operation in a certain type of algebraic system (eventually known as a Clifford algebra). The word was used in its current meaning by Woldemar Voigt in 1899.

Tensor calculus was developed around 1890 by Gregorio Ricci-Curbastro under the title absolute differential calculus, and was made accessible to many mathematicians by the publication of Tullio Levi-Civita's 1900 classic text of the same name (in Italian; translations followed). In the 20th century, the subject came to be known as tensor analysis, and achieved broader acceptance with the introduction of Einstein's theory of general relativity, around 1915.

General relativity is formulated completely in the language of tensors. Einstein had learned about them, with great difficulty, from the geometer Marcel Grossmann,[2] or perhaps from Levi-Civita himself. Tensors are used also in other fields such as continuum mechanics.

Two usages of 'tensor'
Mathematical
In mathematics, a tensor is (in an informal sense) a generalized linear 'quantity' or 'geometrical entity' that can be expressed as a multi-dimensional array relative to a choice of basis of the particular space on which it is defined. The intuition underlying the tensor concept is inherently geometrical: as an object in and of itself, a tensor is independent of any chosen frame of reference. However, in the modern treatment, tensor theory is best regarded as a topic in multilinear algebra. Engineering applications do not usually require the full, general theory, but theoretical physics now does.

For example, the Euclidean inner product (dot product) — a real-valued function of two vectors that is linear in each — is a mathematical tensor. Similarly, on a smooth curved surface such as a torus, the metric tensor (field) essentially defines a different inner product of tangent vectors at each point of the surface. Just as a linear transformation can be represented as a matrix of numbers with respect to given vector bases, so a tensor can be written as an organized collection of numbers. In physics, the numbers may be obtained as physical quantities that depend on a basis, and the collection is determined to be a tensor if the quantities transform appropriately under change of basis.


Physical - tensor fields
Many mathematical structures informally called 'tensors' are actually 'tensor fields' — an abstraction of tensors to field, wherein tensorial quantities vary from point to point. Differential equations posed in terms of tensor quantities are basic to modern mathematical physics, so that methods of differential calculus are also applied to tensors.

Importance and applications
Tensors are important in physics and engineering. In the field of diffusion tensor imaging, for instance, a tensor quantity that expresses the differential permeability of organs to water in varying directions is used to produce scans of the brain; in this technique tensors are in effect made visible. Perhaps the most important engineering examples are the stress tensor and strain tensor, which are both 2nd rank tensors, and are related in a general linear material by a fourth rank elasticity tensor.

Specifically, a 2nd rank tensor quantifying stress in a 3-dimensional/solid object has components which can be conveniently represented as 3x3 array. The three Cartesian faces of a cube-shaped infinitesimal volume segment of the solid are each subject to some given force. The force's vector components are also three in number (being in three-space). Thus, 3x3, or 9 components are required to describe the stress at this cube-shaped infinitesimal segment (which may now be treated as a point). Within the bounds of this solid is a whole mass of varying stress quantities, each requiring 9 quantities to describe. Thus, the need for a 2nd order tensor is produced.

While tensors can be represented by multi-dimensional arrays of components, the point of having a tensor theory is to explain further implications of saying that a quantity is a tensor, beyond specifying that it requires a number of indexed components. In particular, tensors behave in specific ways under coordinate transformations. The abstract theory of tensors is a branch of linear algebra, now called multilinear algebra.

Examples

Physical examples
As a simple example, consider a ship in the water. We want to describe its response to an applied force. Force is a vector, and the ship will respond with an acceleration, which is also a vector. The acceleration will in general not be in the same direction as the force, because of the particular shape of the ship's hull and keel. The relationship between force and acceleration is linear in classical mechanics. Such a relationship is described by a rank two tensor of type (1,1) (that is to say, here it transforms a plane vector into another such vector). The tensor can be represented as a matrix which when multiplied by a vector results in another vector. Just as the numbers which represent a vector will change if one changes the coordinate system, the numbers in the matrix that represents the tensor will also change when the coordinate system is changed.

In engineering, the stresses inside a solid body or fluid are also described by a tensor; the word "tensor" is Latin for something that stretches, i.e., causes tension. If a particular surface element inside the material is singled out, the material on one side of the surface will apply a force on the other side. In general, this force will not be orthogonal to the surface, but it will depend on the orientation of the surface in a linear manner. This is described by a tensor of type (2,0), in linear elasticity, or more precisely by a tensor field of type (2,0) since the stresses may change from point to point.


Mathematical examples
Some well-known examples of tensors in differential geometry are quadratic forms, such as metric tensors, and the curvature tensor.

Formally speaking, a tensor has a particular type according to the construction with tensor products that gives rise to it. For computational purposes, it may be expressed as the sequence of values represented by a function with a tuple-valued domain and a scalar valued range. Domain values are tuples of counting numbers, and these numbers are called indices. For example, a rank 3 tensor might have dimensions 2, 5, and 7. Here, the indices range from «1, 1, 1» through «2, 5, 7»; thus the tensor would have one value at «1, 1, 1», another at «1, 1, 2», and so on for a total of 70 values. As a special case, (finite-dimensional) vectors may be expressed as a sequence of values represented by a function with a scalar valued domain and a scalar valued range; the number of distinct indices is the dimension of the vector. Using this approach, the rank 3 tensor of dimension (2,5,7) can be represented as a 3-dimensional array of size 2 × 5 × 7. In this usage, the number of "dimensions" comprising the array is equivalent to the "rank" of the tensor, and the dimensions of the tensor are equivalent to the "size" of each array dimension.

A tensor field associates a tensor value with every point on a manifold. Thus, instead of simply having 70 values as indicated in the above example, for a rank 3 tensor field with dimensions «2, 5, 7»; every point in the space would have 70 values associated with it. In other words, a tensor field means there's some tensor-valued function which has, for example, Euclidean space as its domain

2007-07-28 19:45:37 · answer #5 · answered by MAYANK M 1 · 0 0

fedest.com, questions and answers