625/16=y^(-5/3)
y^(5/3)=16/625
(5/3) lg y=lg 16/625
lg y=(3/5)lg 16/625
y=10^[(3/5)lg 16/625]
y=0.111
2007-07-27 01:45:06
·
answer #1
·
answered by confused 1
·
0⤊
0⤋
625/16 =y^-5/3 then y = ((5/2)^4 )^-3/5 = (2/5)^12/5
0.110903174
2007-07-27 19:23:56
·
answer #2
·
answered by mramahmedmram 3
·
0⤊
0⤋
frm the question,
y^-5/3=625/16
->(1/y^5/3)=625/16
->y=(16/625)^3/5
2007-07-27 08:40:56
·
answer #3
·
answered by aviral17 3
·
0⤊
0⤋
log(base y)(625/16) = -5/3
By the rule of logarithms,
y^(-5/3) = 625/16 = 5^4/2^4 = (5/2)^4
Now raise each side to -3/5 :
y = [(5/2)^4]^(-3/5) = (5/2)^(-12/5) = (2/5)^(12/5)
2007-07-27 10:45:20
·
answer #4
·
answered by falzoon 7
·
0⤊
0⤋
y ^(- 5 / 3) = 625 / 16
1 / y^(5 / 3) = 625 / 16
y ^(5 / 3) = 16 / 625
y ^(5 / 6) = 4 / 25
y = (4 / 25)^(6 / 5)
2007-07-27 10:28:19
·
answer #5
·
answered by Como 7
·
0⤊
0⤋
log(y)(625/16) = (-5/3)
y^(-5/3) = (625/16)
y^(-5) = (625/16)^3
y = (625/16)^(3/-5)
y = (16/625)^(3/5)
y = about .1109
another way to do it is
y^(-5/3) = (625/16)
(-5/3)ln(y) = ln(625/16)
ln(y) = (ln(625/16)/(-5/3))
ln(y) = (-3ln(625/16))/5
ln(y) = (-3ln((5/2)^4)))/5
ln(y) = (-12ln(5/2))/5
y = e^((-12ln(5/2))/5)
y = e^((-12/5)^(ln(5/2))
y = (e^(ln(5/2)))^(-12/5)
y = (5/2)^(-12/5)
y = (2/5)^(5/12)
so i would go with
ANS : y = (2/5)^(5/12)
2007-07-27 12:19:27
·
answer #6
·
answered by Sherman81 6
·
0⤊
0⤋