If the atmosphere were isothermal the pressure at a given height would vary as follows:
P = P' e^Mgh/RT
where P' = 1 ATM, M is the average molar mass (0.80*28 + 0.20*32), g = 9.81m/s^2, R = 0.08206 l atm/mole degree K,
T = degree K
Given 100,000 L He @ 25*C & 1 ATM in a rigid ballon carrying a 100 kg load how high would it rise till it reaches equilibrium?
I've tried this one for 3 weeks and I'm getting nowhere.
2007-07-24
07:43:22
·
4 answers
·
asked by
jbowers9
1
in
Science & Mathematics
➔ Physics
OK, OK, it's BALLOON.
Height of a Rigid Balloon Containing 100m3 He and Suspending 100kgs @ 25*C
h = 102.49m
h = -RT/gμ(air) ln[(1+M100kg / MHe) e)/μ(air)]
h = 102.49 m h = -RT/gμ(air) ln(P2/P0)
h = 102.49 m h = -(8774.3) ln(P2/P0)
P0 101,325 kg/m-s2
VHe 100 m3
R 8.31451 kg-m2/s2-mol-K (.001)m3/l 101,325 kg/ms2/atm * 0.0821 l-atm/mole-K
T298.15*K 298.15 degrees K Isothermal Process
nHe 4087.4 moles n = P0 V / R T
g 9.81 m/s2
μ(air) 0.029 kgs/mole
μ(He) 0.004 kgs/mole
M100kg 100 kgs
MHe 16.35 kgs MHe = μ(He) n = μ(He) P0 V / R T
Mair derived Mair = μ(air) n = μ(air) Ph V / R T
Ph = P0exp(-μ(air)gh/RT)
Mair = μ(air) P0V/RTexp(-μ(air)gh/RT)
Mair = MHe μ(air)/μ(He)exp(-μ(air)gh/RT)
Bouyancy Equilibrium Condition Mair = MHe + M100kg Mair/MHe = 1 + M100kg/MHe
(1+M100kg/MHe)μ(He)/μ(air) = exp(-μ(air)gh/RT)
2007-07-26
08:16:39 ·
update #1