English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

when consumers apply for credit, their credit is rated using FICO (Fair, Issac, and company) scores. Credit ratings are given below for a sample of applicants for car loans. Use sample data to construct a 99% confidence interval for the standard deviation of FICO scores for all applicants for credit.

661 595 548 730 791 678 672 491 492 583 762 624 769 729 734 706


*****please kindly show how u got the standard deviation thanks:-)

2007-07-21 19:16:08 · 3 answers · asked by delkkis 1 in Science & Mathematics Mathematics

3 answers

I haven't learned the Confidence Interval yet, but I just learned the S.Dev. again yesterday.
661 595 548 730
791 678 672 491
492 583 762 624
769 729 734 706
Sixteen numbers. Find average.
661 + 595 + 548 + 730 + 791 + 678 + 672 + 491 + 492 + 583 + 762 + 624 + 769 + 729 + 734 + 706 = 10 565
10565/16 = 660.3125 average.
Now get all sixteen
differences squared.
(660.3125 - 661)^2 = 0.47265625
(660.3125 - 595)^2 = 4265.72266
(660.3125 - 548)^2 = 12614.0977
(660.3125 - 730)^2 = 4856.34766
(660.3125 - 791)^2 = 17079.2227
(660.3125 - 678)^2 = 312.847656
(660.3125 - 672)^2 = 136.597656
(660.3125 - 491)^2 = 28666.7227
(660.3125 - 492)^2 = 28329.0977
(660.3125 - 583)^2 = 5977.22266
(660.3125 - 762)^2 = 10340.3477
(660.3125 - 624)^2 = 1318.59766
(660.3125 - 769)^2 = 11812.9727
(660.3125 - 729)^2 = 4717.97266
(660.3125 - 734)^2 = 5429.84766
(660.3125 - 706)^2 = 2087.34766
Now add these 16 #'s up and divide by 16.
0.47265625 + 4 265.72266 + 12 614.0977 + 4 856.34766 + 17 079.2227 + 312.847656 + 136.597656 + 28 666.7227 + 28 329.0977 + 5 977.22266 + 10 340.3477 + 1 318.59766 + 11 812.9727 + 4 717.97266 + 5 429.84766 + 2 087.34766 = 137945.438
Divide that sum by 16 to get Variance.
137 945.438 / 16 = 8621.58987
Square root that to get Standard Deviation.
8621.58987^0.5 = 92.8525168
So Standard Deviation is 92.8525 I guess.

Okay I learned a little.
For 99% z=2.576 or something according to google. So 92.8525 times 2.57600 = + or -239.188 from average 660.3125

660.3125 + 239.18800 = 899.5005
660.3125 - 239.18800 = 421.1245
So 421.12 is lower limit
And 899.50 is upper limit
for 99% confidence I guess.

2007-07-21 19:27:30 · answer #1 · answered by winter_new_hampshire 4 · 0 0

Using a calculator in statistics mode I get
m = 660.3125
σ = 95.89767
Z ≡ (X - m) / σ
99% = P(- 2.5758 < Z < 2.5758) =
P(- 2.5758 < (X - m) / σ < 2.5758) =
P(- 2.5758σ < (X - m) < 2.5758σ ) =
P(m - 2.5758σ < X < m + 2.5758σ ) =
P(660.3125 - 2.5758*95.89767 < X < 660.3125 + 2.5758*95.89767 ) =
P(413.2993 < X < 907.3257) = 99%
or
P(413 < X < 907) = 99%
m = (∑x)/n
σ = √((∑(x - m)^2))/n)
which can be restated as
σ = √((∑x^2)/n - m^2)
(derived below)
which is the way standard deviation is calculated by a calculator. Calculating "by hand", of course, can use either method. Usually I use a spreadsheet for this as it has built-in functions, or can be set up for the more detailed display.

σ = √(∑(x^2 - 2mx + m^2))/n)
σ = √(∑x^2 - ∑2mx + ∑m^2)/n)
σ = √(∑x^2 - 2m∑x + nm^2)/n)
σ = √(∑x^2 - 2((∑x)/n)∑x + n((∑x)/n)^2)/n)
σ = √(∑x^2 - 2((∑x)^2/n) + ((∑x)^2/n))/n)
σ = √(∑x^2 - ((∑x)^2/n)/n)
σ = √((∑x^2)/n - ((∑x)^2/n^2))
σ = √((∑x^2)/n - ((∑x)/n)^2)
σ = √((∑x^2)/n - m^2)

2007-07-21 21:09:50 · answer #2 · answered by Helmut 7 · 0 0

Because the sample size is < 30, a t-table is appropriate here.
The general formula for this confidence interval is:
Xbar ± t(sub α/2)[s/√n]; Where t(sub α/2) = 2.947 (from the t-tables with df = 15)
s = √[(n(Σx²)-(Σx)²)/(n(n-1))] = 95.9; Xbar = 660.3; n = 16
(Σx²) means square all the data first and then sum the squares.
(Σx)² means sum the data first and then square the sum.

99% confidence interval is:
660.3 ± 2.947(95.9/√16)
660.3 ± 70.65
or 589.7 < µ < 730.9

2007-07-22 01:57:24 · answer #3 · answered by cvandy2 6 · 0 0

fedest.com, questions and answers