You can show this using the angle sum identity, cos(x + y) = cos(x)*cos(y) - sin(x)*sin(y). Since cos(2x) = cos(x + x), the identity reduces to cos^2(x) - sin^2(x).
2007-07-19 03:37:32
·
answer #1
·
answered by DavidK93 7
·
0⤊
1⤋
since cos^2 (x) = 1-sin^2(x),
you get 1-2*sin^2(x).
But recall that sin^2(x) = [1-cos(2x)]/2
therefore 2*sin^2(x) = 1-cos(2x)
plug back in and get
1-((1-cos(2x))) = cos(2x)
identity.
2007-07-19 10:41:08
·
answer #2
·
answered by Not Eddie Money 3
·
0⤊
1⤋
Use addition identity: (put x's in for a & b)
cos (a + b) = (cos a)(cos b) - (sin a)(sin b)
cos^2(x) - sin^2(x) = cos(2x)?
(cos x)(cos x) - (sin x)(sin x) = cos(2x)
2007-07-19 10:41:03
·
answer #3
·
answered by Reese 4
·
0⤊
1⤋
LHS:
cos^2(x) - (1 - cos^2(x)) ...................{sin^2(x)+cos^2(x)=1}
2cos^2(x) - 1
=cos(2x)........................................{axiom : 2cos^(2x) - 1 =
1 - 2sin^(2x) =
cos(2x)}
hope tht explains it :D
2007-07-19 10:39:34
·
answer #4
·
answered by Ultimate 1
·
0⤊
1⤋
a pretty demonstration: with i (where i^2=-1)
exp(ix)=cosx + i*sinx
so : cosx = Re(exp(ix)) and sinx=Im(exp(ix))
cos(2x) = Re(exp(i2x))
=Re((exp(ix)^2)
=Re((cosx+isinx)^2)
=Re( cos^2(x) + 2i cosx sinx - sin^2(x))
= cos^2(x) - sin^2(x)
2007-07-19 14:08:03
·
answer #5
·
answered by Wilfried V 2
·
0⤊
0⤋