English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Find the general solution of this differential equation. t*(dy/dt) + 2*y = sin(t) for t > 0. Thanks.

2007-07-17 04:27:05 · 2 answers · asked by jimmycheesemaster 2 in Science & Mathematics Mathematics

2 answers

Divide by t and get
dy/dt + 2 · y/t = sin(t)/t

You can solve such an ordinary DE of the form
dy/dt + p(t) · y = q(t)
with the integrating factor:
µ = exp( ∫ p(t) dt )
the general solution is
y =( ∫ µ · q(t) dt + C ) / µ

For this problem
µ = exp( ∫ 2/t dt ) = exp ( 2·ln(t)) = t²

y = ( ∫ t² · sin(t) / t dt + C ) / t²
= ( ∫ t · sin(t) dt + C ) / t²
= (sin(t) - t · cos(t) + C ) / t²
= sin(t)/t² - cos(t)/t + C/ t²

2007-07-17 06:00:13 · answer #1 · answered by schmiso 7 · 0 0

Only if you mow my lawn.

2007-07-17 11:30:16 · answer #2 · answered by Gene 7 · 0 0

fedest.com, questions and answers