English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2007-07-16 17:13:37 · 5 answers · asked by yoggnihc20022002 1 in Science & Mathematics Mathematics

5 answers

integral of sin^3 3x cos 3x dx
= integral of (1/3)sin^3 3x d sin 3x
= (1/12)sin^4(3x) + c
-----------
Reason: Used mental substitution because cos 3x dx = (1/3) d sin 3x.

2007-07-16 17:17:34 · answer #1 · answered by sahsjing 7 · 0 0

I'll use a double substitution (although it's not necessary):
∫ sin^3 3x cos 3x dx
u = 3x
du = 3 dx (or dx = du/3)

∫ sin^3 3x cos 3x dx = (1/3) ∫ sin^3 u cos u du
v = sin u
dv = cos u du

(1/3) ∫ sin^3 u cos u du = (1/3) ∫ v^3 dv
(1/3)(v^4)/4 + C
(1/12)v^4 + C

now resubstitute:
(1/12)(sin^4 u) + C
(1/12)(sin^4 3x) + C

2007-07-16 17:22:55 · answer #2 · answered by hawkeye3772 4 · 0 0

Let u = sin(3x)
then du = 3cos(3x)dx
cos(3x)dx = (1/3)du
and
∫sin^3(3x)cos(3x)dx
becomes
(1/3)∫u^3du =
(1/12)u^4 + C
Substituting back,
∫sin^3(3x)cos(3x)dx =
(1/12)sin^4(x) + C

2007-07-16 17:27:59 · answer #3 · answered by Helmut 7 · 0 0

Just use the substitution
u = sin(3x)
It will work itself out.

2007-07-16 17:19:33 · answer #4 · answered by Dr D 7 · 0 0

Int[Sin^2 3x. Sin 3x. Cos 3x ]dx = 0.5 Int[Sin^2 3x.Sin 6x]dx
=0.25 Int [(1-Cos 6x)Sin 6x]dx
=0.25Int[Sin6x]dx - 0.125 Int[Sin12x]dx
=-{0.25. Cos 6x}/6 + {0.125 Cos 12x}/12 + C

2007-07-16 17:35:09 · answer #5 · answered by Snoopy 3 · 0 0

fedest.com, questions and answers