English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

identify u
integration formula.

2007-07-11 16:11:30 · 4 answers · asked by Cantthinkofanickname 1 in Science & Mathematics Mathematics

4 answers

u = t^2
du = 2t dt
dt = du / (2t)

int(t sin(t^2) dt)
=int((1/2) sin(u) du)
= -(1/2)cos(u) + C
= -(cos(t^2)) / 2 + C

2007-07-11 16:14:41 · answer #1 · answered by whitesox09 7 · 0 0

∫ t sin t^2 dt
u = t^2
du = 2tdt

∫ t sin t^2 dt
= (1/2)∫ sin u du
= (1/2)*(-cos u) + c
= -(cos u)/2 + c
= -(cos t^2)/2 + c

2007-07-11 23:16:37 · answer #2 · answered by gudspeling 7 · 0 0

let u = t²
du = 2t dt
du / 2 = t dt
I = (1/2) ∫ sin u du
I = (- 1/2) cos u + C
I = (- 1/2) cos t² + C

2007-07-12 04:07:45 · answer #3 · answered by Como 7 · 0 0

http://en.wikipedia.org/wiki/Integration_by_parts

Now do your own homework, lazy face!

(Or make this program
http://labs.imranyusuff.net/tabular_integration/
do it for you)

2007-07-11 23:17:42 · answer #4 · answered by Rachel S 2 · 0 2

fedest.com, questions and answers