THE MOST SIMPLE SOLUTION:
It is difference of squares!
DO NOT EXPAND!
take a=3^x+3^-x, b=3^x-3^-x
in
a^2-b^2 = (a-b) (a+b)
we have
a-b = 2 * 3^-x
a+b = 2 * 3^x
( 3^x +3^-x)^2 - (3^x - 3^-x)^2
= (3^x +3^-x -3^x +3^-x) (3^x +3^-x +3^x -3^-x)
= 2 * 3^-x * 2 * 3^x
= 4
Because 3^x * 3^-x = 1
2007-07-03 18:52:57
·
answer #1
·
answered by Payam 2
·
0⤊
1⤋
(3^x + 3^-x)^2 - (3^x - 3^-x)^2
= (3^x + 3^-x)(3^x + 3^-x) - (3^x - 3^-x)(3^x - 3^-x)
= (3^(2x) + 3^0 + 3^0 +3^(-2x)) - (3^(2x) - 3^0 - 3^0 + 3^(-2x))
= (3^2)^x + 1 + 1 + (3^-2)^x - (3^2)^x + 1 + 1 - (3^-2)^-x
= 9^x + 1 + 1 + (1 / 9)^x - 9^x + 1 + 1 - (1 / 9)^x
= 4
2007-07-03 18:37:10
·
answer #2
·
answered by mathjoe 3
·
1⤊
0⤋
similar to mathjoe's approach....
(3^x + 3^-x)^2 - (3^x - 3^-x)^2
expanding gives...
= (3^x + 3^-x)(3^x + 3^-x) - (3^x - 3^-x)(3^x - 3^-x)
multiplying out gives...
= (3^(2x) + 3^0 + 3^0 +3^(-2x)) - (3^(2x) - 3^0 - 3^0 + 3^(-2x))
rearranging gives...
= 3^(2x) - 3^(2x) +3^(-2x) - 3^(-2x) +1+1+1+1
= 0 + 0 + 1+1+1+1 = 4
2007-07-03 18:57:18
·
answer #3
·
answered by Dr W 7
·
0⤊
1⤋
( 3^x +3^-x)^2 - (3^x - 3^-x)^2
= (3^2x +2*3^0+3^-2x) - (3^2x -2*3^0 + 3^-2x)
= 3^2x +2 +3^-2x -3^2x +2 - 3^-2x
= 4
2007-07-03 19:00:27
·
answer #4
·
answered by ironduke8159 7
·
0⤊
0⤋
(3^x + 3^-x)^2 - (3^x - 3^-x)^2
[3^x + 1/(3^x)]^2 - [3^x - 1/(3^x)]^2
[3^x + 1/(3^x)][3^x + 1/(3^x)] - [3^x - 1/(3^x)][3^x - 1/(3^x)]
[(3^x^2) + (3^x/3^x) + (3^x/3^x) + 1/(3^x^2)] - [(3^x^2) - (3^x/3^x) - (3^x/3^x) + 1/(3^x^2)]
[(3^x^2) +1 +1 + 1/(3^x^2)] - [(3^x^2) -1 -1 + 1/(3^x^2)]
[(3^x^2) +2 +1/(3^x^2)] - [(3^x^2) - 2 +1/(3^x^2)]
(3^x^2) +2 +1/(3^x^2) - (3^x^2) + 2 - 1/(3^x^2)]
2 + 2
4
Tricky to see it all written like this, but it works.
2007-07-03 18:28:58
·
answer #5
·
answered by durhamdouglas 2
·
0⤊
2⤋
( 3^x +3^-x)^2 - (3^x - 3^-x)^2
=3^2x +3^-2x + 2 - (3^2x + 3^-2x -2)
=4
2007-07-03 18:34:57
·
answer #6
·
answered by Snoopy 3
·
0⤊
1⤋
just take the antiderivative of the asymptote to determine the definite integral and use simple logarithm to find the hyperbolic trigonometric functions.
easy as pie
its a Fundamental Theorem of Calculus
2007-07-03 18:14:54
·
answer #7
·
answered by dr. jay may 1
·
0⤊
3⤋
(3^2x + 2) - (3^2x - 2)
2 + 2
4
2007-07-03 18:09:01
·
answer #8
·
answered by cscokid77 3
·
0⤊
4⤋
Yea it's a very simple math equation. The answer has to do with the simplicities of ditigitisfigureitoutis.
(duh!!!!)-Everyone knows how do answer that
2007-07-03 18:05:51
·
answer #9
·
answered by Anonymous
·
1⤊
3⤋
YOU NEED TO DO YOUR OWN HOMEWORK TO SUCEED
2007-07-03 18:08:06
·
answer #10
·
answered by DEVO 1
·
1⤊
4⤋