English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

int tan-squared-x + sec^4x

the top limit is pi/4 and the bottom limit is 0.

any help would be great!

2007-06-23 11:16:51 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

∫tan^2(x) + sec^4(x) dx, x from 0 to pi/4
= ∫[tan^2(x) + sec^4(x)][1/sec^2(x)] dtan(x), x from 0 to pi/4
= ∫[tan^2(x)/[1+tan^2(x)] + 1 + tan^2(x)] dtan(x), x from 0 to pi/4

Can you finish it now?

2007-06-23 11:46:18 · answer #1 · answered by sahsjing 7 · 0 0

I = ∫ tan²x + sec^(4)x dx
I = ∫ tan²x + sec²x.sec²x dx
I = ∫ tan²x + (tan²x + 1).(tan²x + 1).dx
I = ∫ tan^(4)x + 3tan²x + 1 dx
let u = tan x
du = sec²x dx
dx = du / sec²x
dx = du / (tan²x + 1)
dx = du/(u² + 1)
I = ∫ (u^4 + 3u² + 1) / (u² + 1) du
I = ∫ u² + 2 - 1 / (u² + 1) du
I = u³/3 + 2u - tan^(-1) u + C
I = (1/3).tan³x + 2 tanx - tan^(-1)(tan x) + C

2007-06-26 03:30:52 · answer #2 · answered by Como 7 · 0 0

fedest.com, questions and answers