English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

14. Find the range for the function M(x) =
x2 -3x + 5 if the domain is D = {-2, 0, 1}.


A.
{3, 5, 15}

B.
{3, 5, 7}

C.
{-3, 0, 15}

D.
{-5, 3, 15}

15. Given the function P(z) = z2 - 8, find P(-2).


A.
4


B.
0

C.
-4

D.
-6

2007-06-12 14:16:30 · 4 answers · asked by sunny 1 in Science & Mathematics Mathematics

4 answers

14. The range is the set of values that the function can spit out when you put in any of the values in the domain. So all we have to do is:
Plug in the three different values.
at -2: (-2)^2-3(-2)+5 = 4+6+5=15
at 0: (0)^2-3(0)+5=5
at 1: (1)^2-3(1)+5=1-3+5=3

So the range is {3,5,15}, answer A.


15. P(z) means what you get when you apply function P to any variable z. So simply plug in z = -2. You get
P(-2)=(-2)^2-8 = 4-8=-4, answer C.

2007-06-12 14:22:01 · answer #1 · answered by ya_tusik 3 · 0 0

For question 14, just plug in the three values of the domain into the function and you have the range!

For 15, (-2)^2-8 = 4-8 = -4

2007-06-12 21:21:30 · answer #2 · answered by MathProf 4 · 0 0

Question 14
M(-2) = 4 + 6 + 5 = 15
M(0) = 5
M(1) = 3
OPTION A

Question 15
P(-2) = 4 - 8 = - 4
OPTION C

2007-06-13 17:20:47 · answer #3 · answered by Como 7 · 0 0

14.

M(x) = x^2 -3x + 5
M(-2)=(-2)^2 - 3(-2) + 5
M(-2)=15

M(0)=(0)^2 - 3(0) + 5
M(0)=5

M(1)=(1)^2 - 3(1) + 5
M(1)=3

ans:A

15.

P(z) = z^2 - 8
P(-2) = (-2)^2 - 8
P(-2) = -4

ans:C

2007-06-12 21:24:47 · answer #4 · answered by jackleynpoll 3 · 0 0

fedest.com, questions and answers