English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

find all the points where these functions have any local extrema, give the values of any local extrema, identify any saddle points

function is
f(x,y)=2y^3+5x^2+60xy+25

the ending is whats giving me a hard time
what do i do after
y = 0, 60
x = 0, -360
or is that it?

2007-06-06 09:55:12 · 1 answers · asked by jake p 2 in Science & Mathematics Mathematics

1 answers

fx=10x+60y=0
fy=6y^2+60x=0=>y^2+10x=0 so 10x=-y^2 and
-y^2+60y=0 which gives y=0 and y=60
for y=0 x=0
for y=60 x=-360
critical points (0,0) and (-360,60)
Now we must study the Hessian fxx*fyy-fxy^2 = H
fxx=10
fyy=12y
fxy=60
At(0,0) H=-3600<0 so this is a saddle point
at(-360,60) H = 10(720)-3600= 3600>0 and fxx=10>0
so this is a local minimum

2007-06-06 15:18:29 · answer #1 · answered by santmann2002 7 · 0 0

fedest.com, questions and answers