Quoting my answer to the nearly identical question here: http://answers.yahoo.com/question/index;_ylt=Al.7r9bsOnRzG_CIpn1Shvfsy6IX?qid=20070603125901AAKtIfQ&show=7#profile-info-d04094d055d90c1fd655614bf175cb61aa
[h→0]lim (cos (x+h) - cos x)/h
Using the angle addition formula:
[h→0]lim (cos x cos h - sin x sin h - cos x)/h
Splitting the fraction:
[h→0]lim ((cos h - 1)/h) cos x - (sin h/h) sin x
Using the linearity of limits:
cos x [h→0]lim (cos h - 1)/h - sin x [h→0]lim (sin h/h)
[h→0]lim (sin h/h) = 1 (this is proved geometrically, before even considering the derivatives), so:
cos x [h→0]lim (cos h - 1)/h - sin x
Multiplying the second limit by the conjugate:
cos x [h→0]lim (cos² h - 1)/((cos h + 1)h) - sin x
Using the Pythagorean theorem:
cos x [h→0]lim -sin² h/((cos h + 1)h) - sin x
Writing as the product of two fractions:
cos x [h→0]lim -sin h/(cos h + 1) * sin h/h - sin x
The right fraction approaches 1 (as I mentioned earlier), and the left fraction can be evaluated directly as 0/2, so we have:
cos x * 0 * 1 - sin x
-sin x
And we are done.
2007-06-03 09:28:23
·
answer #1
·
answered by Pascal 7
·
1⤊
0⤋
lim (f(x + dx) - f(x))/dx = (cos(x + dx) - cosx)/dx =
dx->0
= (-2*sin(2*x + dx)/2*sin(dx/2))/dx = (-2*sin(2*x + dx)/2*sin(dx/2))/((dx/2)*2) = -sin((2*x + dx)/2) = -sin(x)
<0>>
It would be more clear when you write it down!
2007-06-03 16:48:23
·
answer #2
·
answered by Alas 2
·
0⤊
0⤋
This has been done here:
http://au.answers.yahoo.com/question/index;_ylt=AjJFWGLPV.0Yx1khz2iDYz3h5gt.?qid=20070527150303AAvVlTO&show=7#profile-info-EsNDPTxhaa
Have a look and decide
2007-06-03 17:10:26
·
answer #3
·
answered by Wal C 6
·
0⤊
0⤋
Let y = f(x) = cos(x)
At a small interval dx,
y + dy = cos(x+dx).
Now derivative is defined as :
limit dx-> 0 (dy/dx) = f'(x)
ie, (cos(x+dx) - cos(x)) / dx
cos(x+dx) can be written as cos(x).cos(dx) - sin(x).sin(dx)
Therefore,
dy/dx =
cos(x).cos(dx) - sin(x).sin(dx) - cos(x)
-----------------------------------------------------
dx
= cos(x). (cos(dx) -1) - sin(x). sin(dx)
--------------- --------------------
dx dx
Applying the limit dx -> 0, we have,
limit dx->0 cos(dx) -1 cos(dx) 1
--------------- = ---------- - ----
dx dx dx
= 1/0 - 1/0
= 0
And,
limit dx->0 sin(dx)/dx = 1
Putting these , we have the derivative as,
=====================================
f'(x) = cos(x) . (0) - sin(x). (1)
= - sin(x)
=====================================
2007-06-05 21:23:26
·
answer #4
·
answered by Anonymous
·
0⤊
0⤋