English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

State the postulate that can be used to show each statement is true. Use this link to show the figure needed.
http://img239.imageshack.us/img239/1822/geographproofpv9.png

8. Given that points R and Q lie in plane H, line b also lies in plane H.

9. Line b and XT intersect at T.

10. Points R, Q, and S are coplanar.

11. X and T are collinear.

12. X, T, Q are coplanar.

13. Z and T are collinear.

14. Imagine the following scenario: Point R is the midpoint of PQ and Q is the midpoint of RS. Write a proof to show that PR QS.

2007-06-03 06:51:35 · 2 answers · asked by alexander_irvine 2 in Science & Mathematics Mathematics

2 answers

8. If two points lie on a plane, the line containing them also lies on the plane.

9. Does T lie on line b? If not, then his is not true.

10. Through three noncolinear points, there is exactly one plane.

11. Unique Line Assumption: Through any two points, there is exactly one line.

12. Through three noncolinear points, there is exactly one plane.

13. Unique Line Assumption: Through any two points, there is exactly one line.

14. PR = RQ and RQ = RS
These are the definitions of midpoints.
PR = RS
This is the reflexive theorem. Two things equal to another thing are equal to each other.

2007-06-03 15:11:40 · answer #1 · answered by TychaBrahe 7 · 0 0

First of all any two points are colinear, and any three points are coplanar. But I'll address your last question.

R is the midpoint of PQ nad Q is the midpoint of RS. I guess you want proof that all four points are colinear.

Let m = gradient of PQ. Since R is on PQ,
m = gradient or RQ
Let n = gradient of RS
since Q is on RS, n = gradient of RQ
Hence n = m.
This proves that PRQ and QS are parallel. Since they have common points, then they are also colinear.

2007-06-03 15:19:14 · answer #2 · answered by Dr D 7 · 0 0

fedest.com, questions and answers