Expand & simplify the following expression... (-1-i)^3
First: eliminate the exponent.
(-1-i)(-1-i)(-1-i)
Sec: combine the 1st two set of parenthesis - use the Foil Method.
(-1-i)(-1-i)
= (-1)(-1)+(-1)(-i)+(-i)(-1)+(-i)(-i)
= 1+i+i+i^2
= 1+2i+i^2
*Rule - the "i^2" becomes (-1).
= 1+2i+(-1)
= 1+2i-1
= 2i
now you have... 2i(-1-i)
Third: combine the last two sets - use Distribution.
(2i)(-1)+(2i)(-i)
= -2i+(-2i^2)
= -2i+(-2(-1))
= -2i + 2 or, 2 - 2i
= 2i-2
2007-05-28 19:17:13
·
answer #1
·
answered by ♪♥Annie♥♪ 6
·
1⤊
0⤋
Two methods:
1. Express -1-i in polar form, and raise to the power of 3
2. Just do the multiplication:
(-1-i)^3 = (1+2i-1)*(-1-i)
= 2i(-1-i) = 2 -2i
2007-05-28 18:19:33
·
answer #2
·
answered by modulo_function 7
·
0⤊
1⤋
FOIL method above is correct, but the
Other method:
change to trig form, then apply DeMoivres Theorem
(-1-i) = sqrt2 (cos 225 + i sin 225)
cube this
(sqrt2)^3 (cos 225*3 + i sin 225*3)
2^(3/2) (cos675 + i sin675)
2^(3/2) (1/sqrt2 - i 1/sqrt2)
(2 - 2i)
2007-05-28 18:12:47
·
answer #3
·
answered by Anonymous
·
1⤊
1⤋
I guess the two methods would be binomial expansion and simple algebraic expansion through the FOIL method. I'll do the latter.
(-1 - i)^3
(-1 - i)(-1 - i)(-1 - i)
(1 + 2i + i^2)(-1 - i)
(2i)(-1 - i)
-2i - 2i^2
-2i + 2
Hope that helps =)
2007-05-28 18:12:20
·
answer #4
·
answered by Bhajun Singh 4
·
0⤊
2⤋
because of the actual fact the readers interior the previous me have defined so precise i prefer not bypass into the info. I only mandatory to function one greater element ,i.e, the circuit you're talking approximately is a Whetstone circuit. In Whetstone circuits the present around the diagonal resistor is many times 0. Hop this helped.:)
2016-12-30 05:00:37
·
answer #5
·
answered by radona 3
·
0⤊
0⤋
Method (1):
-1 - i = sqrt(2)*exp(-i*3*pi/4)
(-1 -i)^3 = 2*sqrt(2)*exp(-i*9*pi/4) = 2*sqrt(2)*exp(-i*pi/4)
= 2(1 - i)
Method (2):
(-1 - i)^3 = (-1)^3(1 + i)^3 = -2i(1 + i) = 2(1 - i)
2007-05-28 18:35:31
·
answer #6
·
answered by jcsuperstar714 4
·
0⤊
0⤋
(-1 - i)^3 =
(-1 - i) * (-1 - i)^2 =
(-1 - i) * (1 + i + i + i^2)
(-1 - i) * (1 + 2i - 1)
(-1 - i) * (2i)
-2i - 2i^2
-2i + 2
2 - 2i
Alternatively I suppose you could do:
[ -1(1+i) ] ^3
-1 * (1+i)^3
-1 * (1 + 2i + i^2)(1 + i)
-1 * (2i)(1 + i)
-1 * (2i + 2i^2)
-1 * (2i - 2)
2 - 2i
2007-05-28 18:12:41
·
answer #7
·
answered by Anonymous
·
0⤊
1⤋
= [ - (1 + i) ] ³
= - (1 + i) ³
= - (1 + i).(1 + i).(1 + i)
= - (1 + 2i - 1).(1 + i)
= - (2i).(1 + i)
= - 2i - 2i²
= 2 - 2i
= 2.(1 - i)
2007-05-29 03:06:18
·
answer #8
·
answered by Como 7
·
0⤊
1⤋