English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

ln a = 2, ln b = 3, ln c = 5

find,

ln ( a^-1 b^-4)/ (ln (bc)^3)

thanks for your help

2007-05-26 13:50:10 · 3 answers · asked by Mr. Rain 1 in Science & Mathematics Mathematics

3 answers

ln(a^-1 b^-4)=lna^-1+lnb^-4 (because lnxy=lnx+lny)
=-lna-4lnb=-2-12=-14 (because lnx^z=z lnx)
ln(bc)^3=3lnbc=3lnb+3lnc=9+15=24

ln(a^-1 b^-4)/(ln(bc)^3)=-14/24=-7/12

2007-05-26 13:58:46 · answer #1 · answered by Andra 2 · 0 0

To answer this you need to know these laws of lns:

1: ln(xy) = lnx + lny
2: ln(a^x) = xlna

I'll do the first bit for you...


ln ( a^-1 b^-4)/ (ln (bc)^3) =
Using Law 1:

(ln(a^-1) + ln(b^-4))/ ln(b^3c^3)=

(ln(a^-1) + ln(b^-4))/ (ln(b^3) + ln(c^3))


Now you need to use law 2 to simplify it further ie
ln(a^-1) = -1lna

2007-05-26 21:25:07 · answer #2 · answered by Shotta 2 · 0 0

ln ( a^-1 b^-4)/ (ln (bc)^3)
= [ln(1/a)+ln(1/b^4)][3ln b+ 3lnc]
[ln1-lna +ln1-4lnb][3ln b+ 3lnc]
=[0 -2 +0 -4*3][3*3+3*5]
= -14/24 = -7/12

2007-05-26 21:08:05 · answer #3 · answered by ironduke8159 7 · 0 0

fedest.com, questions and answers