To simplify this problem, use the trig identity:
sin (2x) = 2 sin(x)cos(x)
So, your integral becomes:
(1/2)∫(x sin (2x) )dx
Solve using integration by parts and chain rule.
let u = x, dv = sin (2x) dx, so du = dx and v = -(1/2)cos (2x)
∫udv = uv- ∫vdu
(1/2) *{(x(-(1/2)cos (2x)) - ∫-(1/2)cos (2x) dx}
(1/2) *{(x(-(1/2)cos (2x)) + (1/2)∫cos (2x) dx}
(1/2) *{(x(-(1/2)cos (2x)) + (1/2)((1/2) sin (2x))}
(1/2) *{(-1/2) x cos (2x) + (1/4) sin (2x)}
Your answer is:
(1/8) sin (2x) - (1/4) x cos (2x)
2007-05-17 11:56:52
·
answer #1
·
answered by Mr. Payne 3
·
0⤊
0⤋
Integrate by parts. Let u = x. So du = dx.
Now let dv = sin(x) cos(x) dx.
Use the trig identity sin(2x) = 2sin(x)cos(x).
So dv = (1/2)sin(2x) dx, and v = -(1/4)cos(2x) dx.
uv - â« v du =
-(x /4)cos(2x) + â« (1/4)cos(2x) dx
-(x /4)cos(2x) + (1/8)sin(2x) + c
2007-05-17 11:42:26
·
answer #2
·
answered by Anonymous
·
0⤊
0⤋
â«(x * sin x * cos x )dx
(1/8)â«(2x * sin 2x d2x
= (1/8)[-cos 2x * 2x + â«-sin 2x d2x
= (1/8)[-cos 2x * 2x + cos 2x]
2007-05-17 11:44:01
·
answer #3
·
answered by sahsjing 7
·
0⤊
0⤋
sinx*cosx=1/2sin2x
1/2Int x*sin2x= 1/2(-1/2x*cos2x+1/2Intcos2x dx)=
=-1/4x*cos2x+1/8 sin2x +C
2007-05-17 11:47:17
·
answer #4
·
answered by santmann2002 7
·
0⤊
0⤋