English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

let g(x)=tanx

a.) write the second degree Taylor polynomial for g(x) about x=pie/4

b.) estimate g(0.75) using the quadratic Taylor polynomial in part (a.)

2007-05-16 11:15:54 · 2 answers · asked by smile27 1 in Science & Mathematics Mathematics

2 answers

f(x)

= (x-a)^0 / (0!) + f'(a) * (x-a)^1 / (1!) + f''(a) * (x-a)^2 / (2!)

= tan(pi/4) * (x-pi/4)^0 / 1+ sec^2(pi/4) * (x-pi/4)^1 / 1 + 2 * sec^2(pi/4) * tan^2(pi/4) * (x-pi/4)^2 / 2

= tan(pi/4) + sec^2(pi/4) * (x-pi/4) + sec^2(pi/4) * tan^2(pi/4) * (x-pi/4)^2

= 1 + 2 (x-pi/4) + 2 (x-pi/4)^2

And then just plug in 0.75.

2007-05-16 11:59:17 · answer #1 · answered by Jeffrey W 3 · 0 0

tanx = 1+(x-pi/4)*2 +(x-pi/4)^2 /2! *4
tan(0.75) =1-0.070796 +0.002506

2007-05-16 18:55:48 · answer #2 · answered by santmann2002 7 · 0 0

fedest.com, questions and answers