English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Use Newton's method to find all the roots of the equation correct to eight decimal places

x^5 - x^4 - 5x^3 - x^2 + 6x + 3 = 0

2007-05-01 15:27:17 · 2 answers · asked by Christie 1 in Science & Mathematics Mathematics

2 answers

From a graph we can see that there are three roots, at roughly -0.6, 1.2, 2.7.
root 1:
. . . x . . . . . . . . . . / . . . f(x) . . . . . . . / . . f'(x) . . .
-0.6 . . . . . . . . . . . . . . -0.08736 . . . . . 3.312
-0.573623188 . . . 2.576×10^-3. . . . 3.5079
-0.574357735 . . . 2.019×10^-6 . . . 3.5024
-0.574358311 . . . 1.243×10^-12 . . 3.5024

So root 1 is -0.57435831 to 8 d.p. (next correction term is approximately 4×10^-13, so this estimate is actually correct to 12 d.p.)

root 2:
. . . x . . . . . . . . . . / . . . f(x) . . . . . . . / . . f'(x) . . .
1.2 . . . . . . . . . . . . . . . 0.53472 . . . . . -14.544
1.236765677 . . . . -0.013766 . . . . -15.2861
1.235865124 . . . -7.961×10^-6 . . . -15.2684
1.235864603 . . . -2.672×10^-12 . . -15.2684
So root 2 is 1.23566460 to 8 d.p.

root 3:
. . . x . . . . . . . . . . / . . . f(x) . . . . . . . / . . f'(x) . . .
2.7 . . . . . . . . . . . . . . 3.83997 . . . . . 78.2385
2.650919688 . . . . 0.262128 . . . . . 67.6915
2.647047297 . . . 1.5467×10^-3 . . 66.89345
2.647024174 . . . 5.4926×10^-8 . . 66.88870
2.647024173 . . . -7.105×10^-15 . . 66.88870
So root 3 is 2.64702417 to 8 d.p.

2007-05-01 15:40:55 · answer #1 · answered by Scarlet Manuka 7 · 0 0

Why can't you do it? Eh?

2007-05-01 15:30:03 · answer #2 · answered by guess what? 3 · 0 2

fedest.com, questions and answers