I assume - 9!, with exclamination mark is - 9 not 91
Quadratic Formula
x = - 6 ± √b² - 4ac / 2a
x² + 6x - 9 = 0
let
a = 1
b = 6
c = - 9
- - - - - - - -
x = - 6 ± √(6)² - 4(1)(- 9) / 2(1)
x = - 6 ± √36 - (- 36) / 2
x = - 6 ± √36 + 36 / 2
x = - 6 ± √72 / 2
x = - 6 ± 8.48581374 / 2
- - - - - - - - -
Solving for +
x = - 6 + 8.485281374 / 2
x = 2.485281374 / 2
x = 1.242640687
- - - - - - - - - - - -
Solving for -
x = - 6 - 8.485281374 / 2
x = - 14.48528137 / 2
x = - 7.242640687
- - - - - - - - -s-
2007-05-01 04:00:34
·
answer #1
·
answered by SAMUEL D 7
·
0⤊
0⤋
Solve by using the quadratic formula?
X to the second power plus 6x equals 9!
x^2+6x=91 or x^2+6x-91=0
using:
x=(1/2a)[-b+ or -sqrt(b^2-4ac)]
x=(1/2[-6+ or -sqrt(36+364)])=(1/2[-6+ or -20])=-13 or7 answer
2007-05-01 10:46:45
·
answer #2
·
answered by Anonymous
·
0⤊
0⤋
x^2 + 6x = -9
x^2 + 6x + 9 = 0
a = 1
b = 6
c = 9
x = (-b +/- sqrt b^2 - 4ac)/2a
x =( -6 +/- sqrt 6^2 - 4(1)(9))/ 2(1)
x =( - 6 +/- sqrt 36 - 36)/2
x = (- 6 +/- 0)/2
x = -6/2
x = -3
To check:
x^2 + 6x = - 9
(-3)^2 + 6(-3) = - 9
9 - 18 = - 9
- 9 = - 9
2007-05-01 10:52:17
·
answer #3
·
answered by detektibgapo 5
·
0⤊
0⤋
rewrite:
x^2 + 6x + 9 = 0
a=1, b=6, c=9
using QF
x = [ -6 +- sqrt (36-36) ] / 2 = -3 (repeated twice)
2007-05-01 10:41:30
·
answer #4
·
answered by tsunamijon 4
·
0⤊
0⤋
x2+6x+9=0
x= (-b+ (b^2-4ac)^1/2)/2
x= (-6+ (6^2-4(1)(9)^1/2)/2
x= (-6+ (36-36)^1/2)/2
x= (-6+0)/2
x= -3
x^2 + 6x = -9
x^2 + 6x + 9 = 0
(x + 3)(x + 3) = 0
x = -3
i hope this helps you...
2007-05-01 10:57:46
·
answer #5
·
answered by marckuz 2
·
0⤊
0⤋
x = (-b +/- (b^2 -4ac)^.5) /2a
a =1 b=6 c=9
-6+ [(36-(4)(1)(9)]^.5 / 2
-6 - [(36-(4)(1)(9)]^.5 / 2
(-6 + 0) /2 = -3 (-6 - 0) /2 =-3
x = -3
2007-05-01 10:51:24
·
answer #6
·
answered by Brian D 5
·
0⤊
0⤋