English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

"Find the tangent to the curve y=e^(2x) at the point where x=1." Do I need to know a special rule to do this question?

2007-04-24 00:05:00 · 2 answers · asked by hechnal 2 in Science & Mathematics Mathematics

2 answers

y=e^(2x)
find dy/dx = 1/2 *(e^(2x))
when x=1
dy/dx = 1/2 *(e^(2(1)))
then find -dx/dy. That is reverse dy/dx and add a negative sign. Then replace x=1 into y=e^(2x) to find the value of y
Equation of tangent
(Y - y) = -dx/dy(X - x)

Now calculate. Best Luck!!!

2007-04-24 00:13:05 · answer #1 · answered by Tubby 5 · 0 1

dy/dx = f ` (x) = 2.e^(2x)
f ` (1) = 2 = m
Tangent passes thro` (1 , e²)
y - b = m.(x - a)
y - e² = 2.(x - 1)
y = 2x - 2 + e²
y = 2x + 5.33

2007-04-24 07:12:39 · answer #2 · answered by Como 7 · 1 0

fedest.com, questions and answers