English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

*This is a series, and goes on for infinity*

2007-04-21 06:07:46 · 12 answers · asked by lirael1019 1 in Science & Mathematics Mathematics

12 answers

the ratio is 1/4

sum = a1 / (1 - r)

sum = 1/4 / (1 - 1/4)

sum = 1/3

2007-04-21 06:11:44 · answer #1 · answered by      7 · 0 0

those are i68186e616f496f71b123cefda96c331fi68186e616f496f71b123cefda96c331ite sequence that steadily co68186e616f496f71b123cefda96c331verge to a fi68186e616f496f71b123cefda96c331al cost if a68186e616f496f71b123cefda96c331 i68186e616f496f71b123cefda96c331fi68186e616f496f71b123cefda96c331ite 68186e616f496f71b123cefda96c331umber of words are i68186e616f496f71b123cefda96c331cluded. those 2 sequence co68186e616f496f71b123cefda96c331verge to differe68186e616f496f71b123cefda96c331t values: a68186e616f496f71b123cefda96c331 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3314 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3318 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3316 ... = sum68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331 = a million/2^(2*n).000000 b68186e616f496f71b123cefda96c331 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3316 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33164 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33156... = sum[68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331] = 0.583333 the place 'a million/2^(2*n)' ra68186e616f496f71b123cefda96c331ges from 0 to i68186e616f496f71b123cefda96c331fi68186e616f496f71b123cefda96c331ity. You ca68186e616f496f71b123cefda96c331 try this with a spreadsheet. Create formula that ge68186e616f496f71b123cefda96c331erate countless 68186e616f496f71b123cefda96c331umbers i68186e616f496f71b123cefda96c331 the sequence a68186e616f496f71b123cefda96c331d upload them up. in case you plot the cumulative sum as a fu68186e616f496f71b123cefda96c331ctio68186e616f496f71b123cefda96c331 of the 68186e616f496f71b123cefda96c331umber of words, you will see the asymptotic co68186e616f496f71b123cefda96c331verge68186e616f496f71b123cefda96c331ce to a fi68186e616f496f71b123cefda96c331al cost.

2016-11-26 02:47:06 · answer #2 · answered by ? 4 · 0 0

We can use the geometric series Summation from n=1 to infinity of ar^(n-1)=a+ar+ar^2... where a=1 and r=1/4. This would give 1+1/4+(1/4)^2+(1/4)^3+..., which is close to your sum.

The sum equals a/(1-r), so the answer would be 1/(1-1/4) or 4/3.

BUT, since the summation I described above is 1+1/4+1/16+1/64+... and your summation is 1/4+1/16+1/64+... , you must subtract 1 from 4/3, thus giving you the correct answer of 1/3.

2007-04-21 06:17:38 · answer #3 · answered by Supermatt100 4 · 0 0

This is an infinite geometric series which has a sum if and only if the common ratio is betwen -1 and 1. In this case, r = 1/4, so we say the sum converges to:

a1 / (1-r)
where a1 is the first term and r is the common ratio

So the inifinite sum = 1/4 / (1-1/4) = (1/4) / (3/4)= 1/3

2007-04-21 06:11:49 · answer #4 · answered by Kathleen K 7 · 0 0

Let S = 1/4 + 1/16 + 1/64 + ......... infinity.
Multiplying on both sides with 1/4 ;
S/4 = 1/16 + 1/64 + 1/256 + .......... infinity.

Subtracting the second relation from the first;
S - S/4 = {1/4 + 1/16 +1/64 + 1/256 + .......} - {1/16 + 1/64 + 1/256 + ........ }
=> 3S/4 = 1/4
=> S = 1/3

2007-04-21 06:18:46 · answer #5 · answered by shreyas 1 · 1 1

It's a geometric series with a = r = 1/4
Answer = 1/4 / (1- 1/4) = 1/3

2007-04-21 06:13:07 · answer #6 · answered by Dr D 7 · 0 0

This is a geometric series:

a = 1/4
r = 1/4

The sum to infinity is a/(1 - r)

s = (1/4)/(3/4) = 1/3

2007-04-21 06:12:41 · answer #7 · answered by peateargryfin 5 · 0 0

Common ratio , r = 1/4
First term is a = 1/4
S∞ = a / (1 - r) = 1/4 / (3/4) = 1/3

2007-04-21 06:17:05 · answer #8 · answered by Como 7 · 0 0

(1 / 4) + (1 / 16) + (1 / 64) = 0.328125

2007-04-21 06:11:14 · answer #9 · answered by Sarah H 1 · 0 2

16/64+4/64+1/64=21/64 or .328125
If it goes on for ever there is no answer.

2007-04-21 06:12:50 · answer #10 · answered by dwinbaycity 5 · 0 2

fedest.com, questions and answers