the ratio is 1/4
sum = a1 / (1 - r)
sum = 1/4 / (1 - 1/4)
sum = 1/3
2007-04-21 06:11:44
·
answer #1
·
answered by 7
·
0⤊
0⤋
those are i68186e616f496f71b123cefda96c331fi68186e616f496f71b123cefda96c331ite sequence that steadily co68186e616f496f71b123cefda96c331verge to a fi68186e616f496f71b123cefda96c331al cost if a68186e616f496f71b123cefda96c331 i68186e616f496f71b123cefda96c331fi68186e616f496f71b123cefda96c331ite 68186e616f496f71b123cefda96c331umber of words are i68186e616f496f71b123cefda96c331cluded. those 2 sequence co68186e616f496f71b123cefda96c331verge to differe68186e616f496f71b123cefda96c331t values: a68186e616f496f71b123cefda96c331 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3314 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3318 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3316 ... = sum68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331 = a million/2^(2*n).000000 b68186e616f496f71b123cefda96c331 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c3316 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33164 + 68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33156... = sum[68186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c33168186e616f496f71b123cefda96c331] = 0.583333 the place 'a million/2^(2*n)' ra68186e616f496f71b123cefda96c331ges from 0 to i68186e616f496f71b123cefda96c331fi68186e616f496f71b123cefda96c331ity. You ca68186e616f496f71b123cefda96c331 try this with a spreadsheet. Create formula that ge68186e616f496f71b123cefda96c331erate countless 68186e616f496f71b123cefda96c331umbers i68186e616f496f71b123cefda96c331 the sequence a68186e616f496f71b123cefda96c331d upload them up. in case you plot the cumulative sum as a fu68186e616f496f71b123cefda96c331ctio68186e616f496f71b123cefda96c331 of the 68186e616f496f71b123cefda96c331umber of words, you will see the asymptotic co68186e616f496f71b123cefda96c331verge68186e616f496f71b123cefda96c331ce to a fi68186e616f496f71b123cefda96c331al cost.
2016-11-26 02:47:06
·
answer #2
·
answered by ? 4
·
0⤊
0⤋
We can use the geometric series Summation from n=1 to infinity of ar^(n-1)=a+ar+ar^2... where a=1 and r=1/4. This would give 1+1/4+(1/4)^2+(1/4)^3+..., which is close to your sum.
The sum equals a/(1-r), so the answer would be 1/(1-1/4) or 4/3.
BUT, since the summation I described above is 1+1/4+1/16+1/64+... and your summation is 1/4+1/16+1/64+... , you must subtract 1 from 4/3, thus giving you the correct answer of 1/3.
2007-04-21 06:17:38
·
answer #3
·
answered by Supermatt100 4
·
0⤊
0⤋
This is an infinite geometric series which has a sum if and only if the common ratio is betwen -1 and 1. In this case, r = 1/4, so we say the sum converges to:
a1 / (1-r)
where a1 is the first term and r is the common ratio
So the inifinite sum = 1/4 / (1-1/4) = (1/4) / (3/4)= 1/3
2007-04-21 06:11:49
·
answer #4
·
answered by Kathleen K 7
·
0⤊
0⤋
Let S = 1/4 + 1/16 + 1/64 + ......... infinity.
Multiplying on both sides with 1/4 ;
S/4 = 1/16 + 1/64 + 1/256 + .......... infinity.
Subtracting the second relation from the first;
S - S/4 = {1/4 + 1/16 +1/64 + 1/256 + .......} - {1/16 + 1/64 + 1/256 + ........ }
=> 3S/4 = 1/4
=> S = 1/3
2007-04-21 06:18:46
·
answer #5
·
answered by shreyas 1
·
1⤊
1⤋
It's a geometric series with a = r = 1/4
Answer = 1/4 / (1- 1/4) = 1/3
2007-04-21 06:13:07
·
answer #6
·
answered by Dr D 7
·
0⤊
0⤋
This is a geometric series:
a = 1/4
r = 1/4
The sum to infinity is a/(1 - r)
s = (1/4)/(3/4) = 1/3
2007-04-21 06:12:41
·
answer #7
·
answered by peateargryfin 5
·
0⤊
0⤋
Common ratio , r = 1/4
First term is a = 1/4
S∞ = a / (1 - r) = 1/4 / (3/4) = 1/3
2007-04-21 06:17:05
·
answer #8
·
answered by Como 7
·
0⤊
0⤋
(1 / 4) + (1 / 16) + (1 / 64) = 0.328125
2007-04-21 06:11:14
·
answer #9
·
answered by Sarah H 1
·
0⤊
2⤋
16/64+4/64+1/64=21/64 or .328125
If it goes on for ever there is no answer.
2007-04-21 06:12:50
·
answer #10
·
answered by dwinbaycity 5
·
0⤊
2⤋