sin4x = 2 sin2x cos2x = - sin2x
so solutions are
(a) sin2x = 0 ; when 2x = npi; x = n pi/2 for any integer n
so x = 0, pi/2, pi, 3pi/2, 2pi
(b) cos2x = -1/2; when 2x = 2 pi/3 + 2n pi or 4pi/3 +2n pi
so x = pi/3 + n pi or 2pi/3 + npi
so x = pi/3 or 4pi/3 or 2pi/3 or 5pi/3
overall x= 0, pi/3, pi/2, 2pi/3, pi, 4pi/3, 3pi/2, 5pi/3
2007-04-16 06:49:42
·
answer #1
·
answered by hustolemyname 6
·
0⤊
0⤋
If x = 0, then sin 4x = -sin 2x = 0
If x = pi, then sin 4(pi) = 0 = -sin 2(pi) = 0
If x = pi/4, then sin 4(pi/4) = sin 0 =0 and -sin 2(pi/4) not equal o
Now just keep doing this to find the values that make the two functions equal
2007-04-16 13:42:53
·
answer #2
·
answered by kellenraid 6
·
0⤊
0⤋
From the double angle formula...
2 sin 2x cos 2x = -sin 2x
â cos 2x = -1/2.
â 2x = (2pi/3 or 4pi/3) + 2*k*pi
â x = pi/3 or 2pi/3 + k*pi
Solutions: pi/3, 2pi/3, 4pi/3, 5pi/3.
2007-04-16 13:40:28
·
answer #3
·
answered by Anonymous
·
1⤊
0⤋
sin 4x = 2 sin 2x * cos 2x
- sin 2x = 2 sin 2x * cos 2x
sin 2x ( 2 cos 2x + 1) = 0
Either sin 2x = 0, i.e 2x = n*PI for every natural number n
x = n*PI/2 n=0,1,2,3,4
Or 2 cos 2x + 1 = 0
2 cos 2x = -1
cos 2x = -0.5
2x = -2pi/3 + 2n*pi or 2x=2pi/3 + 2n*pi
x=-pi/3 + n*pi n=1,2
or
x=pi/3 + n*pi n=0,1
2007-04-16 13:53:05
·
answer #4
·
answered by Amit Y 5
·
0⤊
0⤋