English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

A. tan^2(x+y) B. sec^2(x+y) C. ln(abs(sec(x+y))) D. sin^2(x+y)-1 E. cos^2(x+y)-1

2007-04-14 04:47:47 · 4 answers · asked by Nicole M 1 in Science & Mathematics Mathematics

4 answers

first u should know that dy/dx(tanx)=sec²x ,1/secx =cosx
and the derivative of y = dy/dx
(if y² so the derivative 2ydy/dx)
tan (x+y)=x

sec²(x+y)*(1+dy/dx) = 1 just divided both side by [sec²(x+y)]

(1+dy/dx)= 1/ [sec²(x+y)]

1+ dy/dx = cos²(x+y)

dy/dx =cos²(x+y) -1

2007-04-14 06:04:31 · answer #1 · answered by Khalidxp 3 · 0 0

Taking derivative
1/cos^2(x+y) *(1+y´)=1
so y´= cos^2(x+y) -1 (E)

2007-04-14 06:58:00 · answer #2 · answered by santmann2002 7 · 0 0

answer: E. cos^2(x+y)-1
(1+y')(1+tan^2(x+y))=1

y'=cos^2(x+y)-1

hint:
sin^2 (x+y) + cos^2 (x+y)=1

2007-04-14 04:53:38 · answer #3 · answered by iyiogrenci 6 · 0 0

lny = tanx lnx -----> y ' / y = sec^2x lnx + (tanx)/x -----> y ' = (sec^2x lnx + (tanx)/x) y = [sec^2x lnx + (tanx)/x] x^tanx

2016-05-19 22:51:44 · answer #4 · answered by ? 3 · 0 0

fedest.com, questions and answers