English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

what is the fourth derivative of f(x)= (2x-3)^4?

2007-04-11 15:06:43 · 4 answers · asked by GHAAD 4 in Science & Mathematics Mathematics

4 answers

Hi,

f(x)= (2x-3)^4

f'(x)= 4*(2x-3)^3*2 = 8*(2x - 3)^3

f"(x) = 24*(2x - 3)^2 * 2 = 48 * (2x - 3)^2

f'''(x) = 96*(2x - 3)*2 = 192(2x - 3)

f''''(x) = 192*2 = 384


You could also work out f(x) = (2x - 3)^4 =

(2x)^4 -4(2x)^3(3)+6(2x)^2(3)^2-4(2x)(3)^3+(3)^4 =

16x^4 - 96x^3 + 216x^2 - 216x + 81

f'(x) = 64x^3 - 288x^2 + 432x -216

f''(x) = 192x^2 -288x + 432

f'''(x) = 384x - 288

f''''(x) = 384


I hope this helps!! :-)

2007-04-11 15:22:11 · answer #1 · answered by Pi R Squared 7 · 0 0

384. Just take the derivative 4 times.

2007-04-11 15:13:41 · answer #2 · answered by xjtoolx 1 · 0 0

first= 4(2x-3)^3 *2
second= 24(2x-3)^2 *2
third= 96(2x-3)*2
Fourth= 384

2007-04-11 15:11:56 · answer #3 · answered by bruinfan 7 · 0 0

f(x)' = 8(2x-3)^3
f(x)''= 48(2x-3)^2
f(x)'''= 192(2x-3)
f(x)''''= 384

2007-04-11 15:12:38 · answer #4 · answered by w1ckeds1ck312121 3 · 0 0

fedest.com, questions and answers